scholarly journals Influence of Xe Ion-Bombardment on the Substrate Microstructure and the Residual Stresses of Tin Coatings Deposited by Plasma Reactive Sputtering onto AISI 4140 Steel

2014 ◽  
Vol 996 ◽  
pp. 841-847 ◽  
Author(s):  
Thaís Helena Carvalho Miranda ◽  
Sandra Vales ◽  
Erika Ochoa Becerra ◽  
Roosevelt Droppa ◽  
Pedro Brito ◽  
...  

The seek for sustainability in the global economic scenario has led to the need for developing materials that provide higher productivity, greater speed of operation, extended lifetimes and enhanced surface finishing of engineering parts. To achieve these goals it is essential to modify the metal surface with respect to its behavior in situations of friction, wear and oxidation at high temperatures. In this work, we studied the impact of different surface treatment strategies involving atomic peening with Xe ions and low temperature plasma nitriding on the surface microstructure of AISI 4140steel and the consequences of those surface treatments on the residual stresses of TiN coatings deposited onto the pre-treated substrates. The results show that ion bombardment at 1000 eV leads to mainly sputtering of surface material and no appreciable surface activation could be obtained for the subsequent plasma nitriding treatment. In the sample subjected to simple plasma nitriding, the highest nitride content was found and a Ti-enriched transition zone deposition appears to build up during the coating deposition. Accordingly the residual stresses of the TiN coatings deposited onto the nitrided steel surface were significantly lower in comparison to those encountered in the coatings grown on the non-treated, only bombarded and bombarded followed by nitriding substrates.

2017 ◽  
Vol 15 (1-2) ◽  
Author(s):  
Santosh V. Bhaskar ◽  
Hari N. Kudal

<p>Components of forming tool dies such as draw ring, ejector pin use AISI 4140 as material for their manufacturing. The integrity of the die cutting tools is essential to achieve adequate product quality. In present study, the influence of plasma nitriding (PN) on the wear behav-iour of AISI 4140 steel was investigated. Full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters and the response variable. The control factors at their two levels (-1 and +1) were: applied load (4.905N and 14.715N), sliding speed (3.14 m/s and 5.23 m/s), and sliding distance (500m and 1000m).The parameters were coded as A, B, and C, consecutively, and were investigated at two levels (-1 and +1). Response selected was Wear Volume Loss (WVL). The effects of in-dividual variables and their interaction effects for dependent variables, namely, WVL were determined. The process of selecting significant factors, based on statistical tools, is illustrat-ed. Analysis of Variance (ANOVA) was performed to know the impact of individual factors on the WVL. Untreated and PN treated AISI 4140 specimens were investigated using field emission Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX) analyzer. Finally diagnostics tools were used to check adequacy of the model in terms of assumptions of ANOVA. ‘Design Expert-7’ and ‘Minitab 17’ softwares were used in the study. Results of statistical analysis indicate that the most effective parameters in the WVL were load and sliding speed. The interaction between load and sliding speed was the most influencing interaction. Results of regression analysis indicate regression coefficient (R2) to be above 90% which suggests good predictability of the model. ‘Predicted-R2’ and ‘Adjusted-R2’, found to be in good agreement with R2, for both the materials under investigation. More-over, results of SEM microscopy suggest PN to be an effective technique to reduce wear.</p>


2018 ◽  
Vol 18 (6) ◽  
pp. 832-836
Author(s):  
Giuseppe Buono ◽  
Francesco Schettini ◽  
Francesco Perri ◽  
Grazia Arpino ◽  
Roberto Bianco ◽  
...  

Traditionally, breast cancer (BC) is divided into different subtypes defined by immunohistochemistry (IHC) according to the expression of hormone receptors and overexpression/amplification of human epidermal growth factor receptor 2 (HER2), with crucial therapeutic implications. In the last few years, the definition of different BC molecular subgroups within the IHC-defined subtypes and the identification of the important role that molecular heterogeneity can play in tumor progression and treatment resistance have inspired the search for personalized therapeutic approaches. In this scenario, translational research represents a key strategy to apply knowledge from cancer biology to the clinical setting, through the study of all the tumors “omics”, including genomics, transcriptomics, proteomics, epigenomics, and metabolomics. Importantly, the introduction of new high-throughput technologies, such as next generation sequencing (NGS) for the study of cancer genome and transcriptome, greatly amplifies the potential and the applications of translational research in the oncology field. Moreover, the introduction of new experimental approaches, such as liquid biopsy, as well as new-concept clinical trials, such as biomarker-driven adaptive studies, may represent a turning point for BC translational research. </P><P> It is likely that translational research will have in the near future a significant impact on BC care, especially by giving us the possibility to dissect the complexity of tumor cell biology and develop new personalized treatment strategies.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1221
Author(s):  
Raquel Lopes ◽  
Bruna Velosa Ferreira ◽  
Joana Caetano ◽  
Filipa Barahona ◽  
Emilie Arnault Carneiro ◽  
...  

Despite the improvement of patient’s outcome obtained by the current use of immunomodulatory drugs, proteasome inhibitors or anti-CD38 monoclonal antibodies, multiple myeloma (MM) remains an incurable disease. More recently, the testing in clinical trials of novel drugs such as anti-BCMA CAR-T cells, antibody–drug conjugates or bispecific antibodies broadened the possibility of improving patients’ survival. However, thus far, these treatment strategies have not been able to steadily eliminate all malignant cells, and the aim has been to induce a long-term complete response with minimal residual disease (MRD)-negative status. In this sense, approaches that target not only myeloma cells but also the surrounding microenvironment are promising strategies to achieve a sustained MRD negativity with prolonged survival. This review provides an overview of current and future strategies used for immunomodulation of MM focusing on the impact on bone marrow (BM) immunome.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Fausto Biancari ◽  
Giovanni Mariscalco ◽  
Hakeem Yusuff ◽  
Geoffrey Tsang ◽  
Suvitesh Luthra ◽  
...  

Abstract Background Acute Stanford type A aortic dissection (TAAD) is a life-threatening condition. Surgery is usually performed as a salvage procedure and is associated with significant postoperative early mortality and morbidity. Understanding the patient’s conditions and treatment strategies which are associated with these adverse events is essential for an appropriate management of acute TAAD. Methods Nineteen centers of cardiac surgery from seven European countries have collaborated to create a multicentre observational registry (ERTAAD), which will enroll consecutive patients who underwent surgery for acute TAAD from January 2005 to March 2021. Analysis of the impact of patient’s comorbidities, conditions at referral, surgical strategies and perioperative treatment on the early and late adverse events will be performed. The investigators have developed a classification of the urgency of the procedure based on the severity of preoperative hemodynamic conditions and malperfusion secondary to acute TAAD. The primary clinical outcomes will be in-hospital mortality, late mortality and reoperations on the aorta. Secondary outcomes will be stroke, acute kidney injury, surgical site infection, reoperation for bleeding, blood transfusion and length of stay in the intensive care unit. Discussion The analysis of this multicentre registry will allow conclusive results on the prognostic importance of critical preoperative conditions and the value of different treatment strategies to reduce the risk of early adverse events after surgery for acute TAAD. This registry is expected to provide insights into the long-term durability of different strategies of surgical repair for TAAD. Trial registration ClinicalTrials.gov Identifier: NCT04831073.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 522
Author(s):  
Akli Benali ◽  
Ana C. L. Sá ◽  
João Pinho ◽  
Paulo M. Fernandes ◽  
José M. C. Pereira

The extreme 2017 fire season in Portugal led to widespread recognition of the need for a paradigm shift in forest and wildfire management. We focused our study on Alvares, a parish in central Portugal located in a fire-prone area, which had 60% of its area burned in 2017. We evaluated how different fuel treatment strategies may reduce wildfire hazard in Alvares through (i) a fuel break network with different extents corresponding to different levels of priority and (ii) random fuel treatments resulting from a potential increase in stand-level management intensity. To assess this, we developed a stochastic wildfire simulation system (FUNC-SIM) that integrates uncertainties in fuel distribution over the landscape. If the landscape remains unchanged, Alvares will have large burn probabilities in the north, northeast and center-east areas of the parish that are very often associated with high fireline intensities. The different fuel treatment scenarios decreased burned area between 12.1–31.2%, resulting from 1–4.6% increases in the annual treatment area and reduced the likelihood of wildfires larger than 5000 ha by 10–40%. On average, simulated burned area decreased 0.22% per each ha treated, and cost-effectiveness decreased with increasing area treated. Overall, both fuel treatment strategies effectively reduced wildfire hazard and should be part of a larger, holistic and integrated plan to reduce the vulnerability of the Alvares parish to wildfires.


2017 ◽  
Vol 51 (4) ◽  
pp. 438-446 ◽  
Author(s):  
Wannapha Nobnop ◽  
Imjai Chitapanarux ◽  
Hudsaleark Neamin ◽  
Somsak Wanwilairat ◽  
Vicharn Lorvidhaya ◽  
...  

Abstract Introduction Deformable image registration (DIR) is used to modify structures according to anatomical changes for observing the dosimetric effect. In this study, megavoltage computed tomography (MVCT) images were used to generate cumulative doses for nasopharyngeal cancer (NPC) patients by various DIR methods. The performance of the multiple DIR methods was analysed, and the impact of dose accumulation was assessed. Patients and methods The study consisted of five NPC patients treated with a helical tomotherapy unit. The weekly MVCT images at the 1st, 6th, 11th, 16th, 21st, 26th, and 31st fractions were used to assess the dose accumulation by the four DIR methods. The cumulative dose deviations from the initial treatment plan were analysed, and correlations of these variations with the anatomic changes and DIR methods were explored. Results The target dose received a slightly different result from the initial plan at the end of the treatment. The organ dose differences increased as the treatment progressed to 6.8% (range: 2.2 to 10.9%), 15.2% (range: -1.7 to 36.3%), and 6.4% (range: -1.6 to 13.2%) for the right parotid, the left parotid, and the spinal cord, respectively. The mean uncertainty values to estimate the accumulated doses for all the DIR methods were 0.21 ± 0.11 Gy (target dose), 1.99 ± 0.76 Gy (right parotid), 1.19 ± 0.24 Gy (left parotid), and 0.41 ± 0.04 Gy (spinal cord). Conclusions Accuracy of the DIR methods affects the estimation of dose accumulation on both the target dose and the organ dose. The DIR methods provide an adequate dose estimation technique for observation as a result of inter-fractional anatomic changes and are beneficial for adaptive treatment strategies.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 750
Author(s):  
Pamali Fonseka ◽  
Taeyoung Kang ◽  
Sing Chee ◽  
Sai V. Chitti ◽  
Rahul Sanwlani ◽  
...  

Neuroblastoma (NBL) is a pediatric cancer that accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc occurs in 20% of NBL patients and is considered high risk as it correlates with aggressiveness, treatment resistance and poor prognosis. Even though the treatment strategies have improved in the recent years, the survival rate of high-risk NBL patients remain poor. Hence, it is crucial to explore new therapeutic avenues to sensitise NBL. Recently, bovine milk-derived extracellular vesicles (MEVs) have been proposed to contain anti-cancer properties. However, the impact of MEVs on NBL cells is not understood. In this study, we characterised MEVs using Western blotting, NTA and TEM. Importantly, treatment of NBL cells with MEVs decreased the proliferation and increased the sensitivity of NBL cells to doxorubicin. Temporal label-free quantitative proteomics of NBL cells highlighted the depletion of proteins involved in cell metabolism, cell growth and Wnt signalling upon treatment with MEVs. Furthermore, proteins implicated in cellular senescence and apoptosis were enriched in NBL cells treated with MEVs. For the first time, this study highlights the temporal proteomic profile that occurs in cancer cells upon MEVs treatment.


Sign in / Sign up

Export Citation Format

Share Document