Recent Developments in Bio-Inspired Sensors Fabricated by Additive Manufacturing Technologies

2016 ◽  
Vol 100 ◽  
pp. 197-206 ◽  
Author(s):  
Gijs J.M. Krijnen ◽  
Remco G.P. Sanders

In our work on micro-fabricated hair-sensors, inspired by the flow-sensitive sensors found on crickets, we have made great progress. Initially delivering mediocre performance compared to their natural counter parts they have evolved into capable sensors with thresholds roughly a factor of 30 larger than of their natural equivalents. Due to this disparity, and also instigated by our work on fly-halteres inspired rotation rate sensors and desert locust ear-drum mimicking membrane struc- tures, we have analysed the differences in performance between natural and man-made sensors. We conclude that two major drawbacks of main-stream micro-fabrication are the lack of easily applicable soft materials, as well as the limitations imposed by photolithography based fabrication with respect to freeform 3D shaping of structures. Currently we are targeting additive manufacturing for biomimetic sensor structures and in this contribution we report initial results of 3D printed sensor structures.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Ruben Foresti ◽  
Benedetta Ghezzi ◽  
Matteo Vettori ◽  
Lorenzo Bergonzi ◽  
Silvia Attolino ◽  
...  

The production of 3D printed safety protection devices (SPD) requires particular attention to the material selection and to the evaluation of mechanical resistance, biological safety and surface roughness related to the accumulation of bacteria and viruses. We explored the possibility to adopt additive manufacturing technologies for the production of respirator masks, responding to the sudden demand of SPDs caused by the emergency scenario of the pandemic spread of SARS-COV-2. In this study, we developed different prototypes of masks, exclusively applying basic additive manufacturing technologies like fused deposition modeling (FDM) and droplet-based precision extrusion deposition (db-PED) to common food packaging materials. We analyzed the resulting mechanical characteristics, biological safety (cell adhesion and viability), surface roughness and resistance to dissolution, before and after the cleaning and disinfection phases. We showed that masks 3D printed with home-grade printing equipment have similar performances compared to the industrial-grade ones, and furthermore we obtained a perfect face fit by customizing their shape. Finally, we developed novel approaches to the additive manufacturing post-processing phases essential to assure human safety in the production of 3D printed custom medical devices.


2017 ◽  
Vol 36 (15) ◽  
pp. 1061-1073 ◽  
Author(s):  
Thomas Hofstätter ◽  
David B Pedersen ◽  
Guido Tosello ◽  
Hans N Hansen

Additive manufacturing technologies have received a lot of attention in recent years for their use in multiple materials such as metals, ceramics, and polymers. The aim of this review article is to analyze the technology of fiber-reinforced polymers and its implementation with additive manufacturing. This article reviews recent developments, ideas, and state-of-the-art technologies in this field. Moreover, it gives an overview of the materials currently available for fiber-reinforced material technology.


2020 ◽  
Vol 27 (3) ◽  
pp. 71-81
Author(s):  
Mariusz Deja ◽  
Mieczysław Stanisław Siemiątkowski ◽  
Dawid Zieliński

AbstractThe dynamic development of additive manufacturing technologies, especially over the last few years, has increased the range of possible industrial applications of 3D printed elements. This is a consequence of the distinct advantages of additive techniques, which include the possibility of improving the mechanical strength of products and shortening lead times. Offshore industry is one of these promising areas for the application of additive manufacturing. This paper presents a decision support method for the manufacturing of offshore equipment components, and compares a standard subtractive method with an additive manufacturing approach. An analytic hierarchy process was applied to select the most effective and efficient production method, considering CNC milling and direct metal laser sintering. A final set of decision criteria that take into account the specifics of the offshore industry sector are provided.


2018 ◽  
Vol 919 ◽  
pp. 222-229
Author(s):  
Jiří Šafka ◽  
Filip Veselka ◽  
Martin Lachman ◽  
Michal Ackermann

The article deals with the topic of 3D printing of pressure vessels and their testing. The main focus of the research was on a 3D model of the pressure vessel, which was originally designed for a student formula racing car project. The described virtual 3D model was designed with regard to 3D printing. The physical model was manufactured using several additive manufacturing technologies. The first technology was FDM using ULTEM 1010 material. The next technology was SLS (Selective Laser Sintering) using polyamide materials (PA3200GF and PA2220). The last technology was SLA (Stereolithography) using a polypropylene material (Durable). Experimental evaluation of the vessels was carried out by a pressure test, which verified the compactness of the 3D printed parts and their possible porosity. At the end of the article, a comparison of each printed model is made in terms of their final price and weight, together with pressure and thermal resistance.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5695
Author(s):  
Jaume Pujante ◽  
Borja González ◽  
Eduard Garcia-Llamas

Since the popularization of press hardening in the early noughties, die and tooling systems have experienced considerable advances, with tool refrigeration as an important focus. However, it is still complicated to obtain homogeneous cooling and avoid hot spot issues in complex geometries. Additive Manufacturing allows designing cavities inside the material volume with little limitation in terms of channel intersection or bore entering and exit points. In this sense, this technology is a natural fit for obtaining surface-conforming cooling channels: an attractive prospect for refrigerated tools. This work describes a pilot experience in 3D-printed press hardening tools, comparing the performance of additive manufactured Maraging steel 1.2709 to conventional wrought hot work tool steel H13 on two different metrics: durability and thermal performance. For the first, wear studies were performed in a controlled pilot plant environment after 800 hot stamping strokes in an omega tool configuration. On the second, a demonstrator tool based on a commercial tool with hot spot issues, was produced by 3D printing including surface-conformal cooling channels. This tool was then used in a pilot press hardening line, in which tool temperature was analyzed and compared to an equivalent tool produced by conventional means. Results show that the Additive Manufacturing technologies can be successfully applied to the production of press hardening dies, particularly in intricate geometries where new cooling channel design strategies offer a solution for hot spots and inhomogeneous thermal loads.


Author(s):  
Jim Flowers

Is the primary purpose of a 3D printer to manufacture a product? Yes, but students and teachers can also use 3D printers to learn about and engage in research and experimentation. This could begin with product research and development, then expand to technical areas based on additive manufacturing technologies, the physical and mechanical properties of additive manufacturing materials, and the properties of 3D printed products. Student inquiry can take the form of formal or informal experimentation and observational studies. Although dedicated testing equipment can facilitate more demanding investigations, it is possible for quite a bit of experimentation to be done with little or no dedicated testing equipment. It is hoped that the reader will identify different educational experiences with experimentation that might fit their learners' needs and see 3D printers as tools for conducting and teaching about research, including product research and development and research into process engineering and materials.


2021 ◽  
Author(s):  
Yingbin Hu

Recent developments and major advances in field-assisted additive manufacturing technologies from aspects of materials, methodologies, and applications.


Author(s):  
Seyed M. Allameh ◽  
Roger Miller ◽  
Hadi Allameh

Additive manufacturing technology has significantly matured over the last two decades. Recent progress in 3D printing has made it an attractive choice for fabricating complex shapes out of select materials possessing desirable properties at small and large scales. The application of biomimetics to the fabrication of structural composites has been shown to enhance their toughness and dynamic shear resistance. Building homes from bioinspired composites is possible if the process is automated. This can be achieved through additive manufacturing where layers of hard and soft materials can be deposited by 3D printing. This study examines mechanical properties of reinforced concrete fabricated by 3D printing. Preliminary results of 4-point bend tests are presented and the implications of 3D-printed home building on current conventional construction practices are discussed.


2018 ◽  
Vol 10 (7) ◽  
pp. 772-782
Author(s):  
Johann Sence ◽  
William Feuray ◽  
Aurélien Périgaud ◽  
Olivier Tantot ◽  
Nicolas Delhote ◽  
...  

AbstractThis paper illustrates the different possibilities given by additive manufacturing technologies for the creation of passive microwave hardware. The paper more specifically highlights a prototyping scheme where the 3D-printed plastic parts can be used as initial proofs of concept before considering more advanced 3D-printed parts (metal parts, for instance). First, a characterization campaign has been made on common plastics used by a 3D printer using the fused deposition modeling and material jetting (Polyjet©) technologies. The impact of the manufacturing strategy (high-speed or high-accuracy) on the part roughness, as well as on the dielectric material permittivity and loss tangent, has been specifically studied at 10 and 16 GHz. Based on a specifically optimized and deeply explained characterization method, the conductivity of a coating based on silver paint has also been characterized on such plastic parts at 10 and 40 GHz. These plastic materials and coating have been used for the creation of quasi-elliptic and tuning-free bandpass filters centered at 6 and 12 GHz and compared with a similar filter made of stainless steel by selective laser melting. Finally, a compact rectangularTE10to circularTE01mode converter also undergoes one prototyping step out of plastic before moving to an advanced part made out of stainless steel. This mode converter, which is made in a single part, is designed to operate from 28 to 36 GHz as a tuning-free final demonstrator.


2021 ◽  
Author(s):  
Aram Khosh Ettekal

The following report has been created to provide a broad range of information on current additive manufacturing technologies, their present applications in commercial and industrial sectors and predictions for their future deployment in those sectors. The report also examines the ongoing research and development of a variety of 3D printing techniques. The review is divided into three sections. The first section is composed of one to two page summaries of academic journals, thesis papers, consultant perspective articles and company releases. Each individual summary provides a synopsis of the article, as well as what the authors foresee as the future implications of the topic they explored. The second section contains summaries and reviews of technical studies on various aspects of several different 3D printing technologies. Lastly the third section introduces implementation strategy for 3D printed components and presents a study that highlights the effect of part orientation on the structural integrity of the printed components.


Sign in / Sign up

Export Citation Format

Share Document