Friction and Wear Behaviour of Borided Ti6Al4v Alloy Sliding Against Al2O3 and Si3N4 Balls in Water

2011 ◽  
Vol 312-315 ◽  
pp. 1004-1009 ◽  
Author(s):  
Erdem Atar ◽  
E.S. Kayali ◽  
Huseyin Cimenoglu

This study focuses on tribological performance of as-received and borided Ti6Al4V alloys against ceramic counterfaces (Al2O3 and Si3N4 balls) in water. The wear mode of the alloy changed from ploughing to polishing by achieving a remarkable reduction in wear loss upon boriding. On the borided surface, the destructive action of the Si3N4 ball was very limited, when compared to that of the Al2O3 ball.

2013 ◽  
Vol 300-301 ◽  
pp. 1254-1258 ◽  
Author(s):  
Xiao Ren Lv ◽  
Xu Yao Huo ◽  
Guang Zu Qu ◽  
Shi Jie Wang

In order to choose the rubber material and improve the service life of Progressing Cavity Pump (PCP ) when exploiting offshore crude oil, it is important to analyze friction and wear behaviour of stator and rotor of PCP in the mixture of crude oil with different water content. The friction and wear test about Nitrile -Butadiene Rubber (NBR) and Fluorine Rubber (FKM) were carried on ring-on-block tester, the wear loss was observed by electron microscope, the wear mechanism was also discussed. The results show that: (1) FKM owns better wearing resistance than NBR in the mixture of crude oil with different water content; (2) when the content of water in the mixture is less than 26%, the frictional coefficient of sample is 0.05, due to the oil film between the friction pairs; (3) when the content of water in the mixture is more than 26%, the frictional coefficient increases to 0.4, because of the water film between the friction pairs.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 665 ◽  
Author(s):  
Juanjuan Zhu ◽  
Fang Xie ◽  
R S Dwyer-Joyce

In this study, bearing bushes made of polyetheretherketone (PEEK), 30 wt % carbon fibre reinforced PEEK, 30 wt % glass fibre reinforced PEEK, each 10 wt % of PTFE, graphite and carbon fibre modified PEEK were investigated on a purpose built pin joint test rig. The unlubricated friction and wear behaviour was assessed in sliding contact with a 300M shaft, subjected to a nominal pressure of 93 MPa, articulating sliding speed of 45 °/s. The worn surface and the subsurface layer were studied using optical profilometry and scanning electron microscopy (SEM). Due to thermal sensitivity of PEEK composites, friction energy and temperature rise were analysed for determining the friction and wear mechanism. The bush made of PTFE, graphite and carbon fibre (each 10 wt %) modified PEEK presented the best performance for friction coefficient, wear loss, friction energy and temperature rise. Current work demonstrated that reinforcement modified PEEK composite possesses desirable properties to perform as a load bearing bush in certain tribological applications.


Author(s):  
Pawandeep Singh ◽  
R.K. Mishra ◽  
Balbir Singh

Abstract This study aims to investigate the tribological behaviour of lamb bone ash (LBA) and boron carbide (B4C) reinforced ZA-27 hybrid metal matrix composites fabricated using a stir casting process. The weight percentage of LBA and B4C particles in the composites were varied from 0-5 wt.%. The composites have been evaluated for density, porosity and microhardness before tribological testing. Dry sliding friction and wear behaviour of composites were studied on a pin-on-disc tribometer by varying load from 10-50 N at a fixed sliding speed of 1 m/s. Also, to investigate the effect of sliding speed on friction and wear behaviour of composites, tests were carried out at 2 m/s and 3 m/s of sliding speed. A scanning electron microscope (SEM) was used for examining the microstructure and worn surface morphology of composite samples. SEM micrographs revealed the presence and homogeneous distribution of reinforcement particles, and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of LBA and B4C particles in the composites. Composites density decreased, and porosity increased with the addition of reinforcement particles. The microhardness of the 5 wt.% reinforced LBA composite improved by 18.38%, whereas hybrid composite containing (2.5 wt.% LBA + 2.5 wt.% B4C) showed an improvement of 42% compared to the base alloy. The coefficient of friction (COF) and wear loss increased with the increase in load, whereas COF decreased and wear loss increased with the increase in sliding speed. Composites showed superior wear resistance even at higher loads and sliding speeds. SEM micrographs of worn surface revealed adhesion and abrasion type of wear mechanisms. Therefore, with the improvement in wear resistance this developed composite can be used as a bearing material over monolithic ZA-27 alloy in the automotive sector.


2019 ◽  
Vol 801 ◽  
pp. 89-94
Author(s):  
Sutanu Samanta ◽  
Thingujam Jackson Singh

The present work aims to experimentally investigate the effect of Kevlar fiber hybridization on dry sliding friction and wear behaviour of bamboo fiber reinforced laminated epoxy composite. Monolithic bamboo laminated composite and different bamboo/Kevlar inter-ply laminated hybrid composites with variation in number of both the laminas were developed in house by hand layup technique. Pin-on-disc experiment was employed to determine its tribological performance. The wear mass loss, specific wear rate and co-efficient of friction of the developed composites, when slide against a rotating disc, were determined and analyzed. The wear mechanisms were studied from the microstructure. From the results, it is observed that, wear loss and co-efficient of friction values were increased with the increase in number of Kevlar laminas.


2017 ◽  
Vol 69 (5) ◽  
pp. 715-722 ◽  
Author(s):  
Sanjay Mohan Sharma ◽  
Ankush Anand

Purpose This paper aims to investigate the effect of CaF2 (calcium fluoride) addition as a solid lubricant on the friction and wear behaviour of sintered Fe-Cu-C materials under different loads. Design/methodology/approach In this study, the effects of CaF2 added in varying weight percentages on the friction-wear properties of Fe-2Cu-0.8C alloys are investigated. Five Fe-2Cu-0.8C-based compositions comprising CaF2 in 0, 3, 6, 9 and 12 Wt.% were prepared using the single-stage compaction and sintering technique. Friction coefficient, wear loss, hardness and compressive strength of the specimens were measured. The worn-out surfaces were analysed using a scanning electron microscope. Friction and wear tests were carried out on pin-on-disc machine under dry sliding conditions at room temperature. Findings The alloy with 3 Wt.% CaF2 was found to be useful in improving wear and friction properties, whereas higher contents of CaF2 resulted in increased wear and friction. Apart from enhanced tribological properties, a slight decrease in the compressive strength was also observed in the 3-Wt.%-CaF2-added sample. Adhesion and abrasion were the prominent wear types observed during this study. Originality/value A new self-lubricating composite is developed where CaF2 is used as a solid lubricant in a Fe-Cu-C-based matrix. CaF2, being a high-temperature lubricant, is tried and tested for friction and wear at room temperature, and the results show that the addition of CaF2 in Fe-Cu-C improved its friction and wear properties. Thus, the developed material can be used for antifriction applications.


2016 ◽  
Vol 721 ◽  
pp. 356-361 ◽  
Author(s):  
Andreas Nevosad ◽  
Saranya Azhaarudeen ◽  
Nicole Doerr ◽  
Heike Zacharias ◽  
Jürgen Klarner ◽  
...  

This work is focused on the damage and wear mechanisms of phosphate conversion coatings which were deposited onto steel substrates by a wet-chemical process. For studying the damage mechanism, sets of multiple scratches were performed. Scratch tests along with SEM micrographs revealed the early damage mechanisms as well as the running-in friction and wear behaviour of phosphate conversion coatings. The deeper understanding allows to increase tribological performance in terms of controlled friction and wear resistance of technical components. This way, promising measures in reduction of seizing and increase of lifetime for such components could be developed.


Lubricants ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 13
Author(s):  
Maria Sarno ◽  
Adolfo Senatore ◽  
Davide Scarpa ◽  
Claudia Cirillo

In the following study, green carbon nanotubes and green few-layer reduced graphene oxide (rGO) were synthesized through simple, sustainable, and scalable processes starting from recycled plastic and charcoal, respectively, and with the highest number of steps involving non-harmful substances. After an extensive physicochemical characterization, which evidenced that both nano-carbons exhibit structures comparable with that of materials produced through more traditional methods and from pure sources, the samples were dispersed in two types of conventional base oils, in particular group I and group III, in order to carry out, for the first time on these green nanomaterials, an accurate study on their tribological performance. Tribological tests evidenced a remarkable reduction of coefficient of friction and wear scar diameter, especially for the green rGO dispersed at 0.1 wt% in the group III oil along with SDBS-Tween 80 surfactants mixture: 18% and 15% at ambient temperature, 12% and 13% at 80 °C, respectively. Furthermore, the tribological performance of the synthesized samples in both oils remained high for 160 min of investigation. A comparison with the same material obtained with a traditional synthesis revealed the absence of fouling phenomena in the lubrication chambers in our case, confirming the higher tribological performances of the green rGO sample, probably, as a consequence of its less ordered nature.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Zhiguo Lu ◽  
Chuanyu Du ◽  
Qingcai Chen ◽  
Tianying Niu ◽  
Na Wang ◽  
...  

The friction and wear characteristics of spike-tooth material (65Mn steel) of Spike-Tooth Harrow in a two-stage peanut harvester were studied in this paper. The friction and wear tests of pin and disc on 65 manganese steel were carried out on the tribometer, then the wear loss and the friction coefficient were studied. The wear loss of the pin was acquired by calculating the mass of the pin before and after the experiment using an electronic balance. According to the actual working environment of peanut spring-finger, four variable parameters are set up: load, speed, soil moisture and soil type. The friction and wear characteristics of pins were studied under different loads, speeds and different soil environments. After wearing, the worn surface of the material was observed by scanning microscope and the wear mechanism was studied. The experimental results show that the wear of the pin increases with the increase of load and decreases with the increase of rotational speed in the same rotation number. Especially in the case of the sandy soil with 20% in moisture, a maximum wear loss of the pin is achieved.


Author(s):  
Waleed Al-Sallami ◽  
Pourya Parsaeian ◽  
Abdel Dorgham ◽  
Anne Neville

Trihexyltetradecylphosphonium bis(2-ethylhexyl)phosphate (phosphonium phosphate) ionic liquid is soluble in non-polar lubricants. It has been proposed as an effective anti-wear additive comparable to zinc dialkyldithiophosphate. Previously, phosphonium phosphate has shown a better anti-wear performance under some conditions such as high temperature. In this work, the tribological performance and the lubrication mechanism of phosphonium phosphate are compared with that of zinc dialkyldithiophosphate when lubricating silicon under various tribological conditions. This can lead to an understanding of the reasons behind the superior anti-wear performance of phosphonium phosphate under some conditions. A micro-scale study is conducted using a nanotribometer. The results show that both additives lead to a considerable reduction in both friction and wear coefficients. The reduction in the wear coefficient is mainly controlled by the formation of the tribofilm on the rubbing surfaces. Zinc dialkyldithiophosphate can create a thicker tribofilm, which results in a better anti-wear performance. However, the formation of a thicker film will lead to a faster depletion and thus phosphonium phosphate can provide better anti-wear performance when the depletion of zinc dialkyldithiophosphate starts.


Sign in / Sign up

Export Citation Format

Share Document