Crystallization and Reconstructive Layer Transformation of a-Si/Au Multilayer Thin Films under a Strong Gravitational Field

2015 ◽  
Vol 363 ◽  
pp. 156-163
Author(s):  
Yoichi Okamoto ◽  
Masami Aono ◽  
Hisashi Miyazaki ◽  
Yudai Ogata ◽  
Makoto Tokuda ◽  
...  

There were still unclear questions in the new method that fabricate the high quality poly crystalline Si thin film from amorphous Si thin film with lower annealing temperature than conventional Si recrystallization temperature. In that recrystallization process, the recrystallization mechanism was generally explained by the MIC (Metal Induced Crystallization) of Au. In this paper, we have discussed the effects of film structure and strong gravity on recrystallization, by using conventional furnace and high-temperature ultracentrifuge furnace system. The five kinds of samples (two bilayered Si/Au thin films, two multilayered Si/Au thin films and trilayered Si/Au/Si thin film) and found the effects of structure and strong gravity. The best for crystallization was Au/Si multilayered thin film, which is almost finished to crystallize even at 673 K annealing. The strong gravity advanced and retreated the crystallization, depending to thin film structure.

Photonics ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 10 ◽  
Author(s):  
Toshihiko Kiwa ◽  
Tatsuki Kamiya ◽  
Taiga Morimoto ◽  
Kentaro Fujiwara ◽  
Yuki Maeno ◽  
...  

This study develops a terahertz (THz) chemical microscope (TCM) that visualizes the distribution of chemical reaction on a silicon-based sensing chip. This chip, called the sensing plate, was fabricated by depositing Si thin films on a sapphire substrate and thermally oxidizing the Si film surface. The Si thin film of the sensing plate was irradiated from the substrate side by a femtosecond laser, generating THz pulses that were radiated into free space through the surface field effect of the Si thin film. The surface field responds to chemical reactions on the surface of the sensing plate, changing the amplitude of the THz pulses. This paper first demonstrates the principle and experimental setup of the TCM and performs the imaging and measurement of chemical reactions, including the reactions of bio-related materials.


2006 ◽  
Vol 113 (2) ◽  
pp. 843-851 ◽  
Author(s):  
Linfeng Zhang ◽  
Erik F. McCullen ◽  
Md H. Rahman ◽  
Jagdish S. Thakur ◽  
Lajos Rimai ◽  
...  

2008 ◽  
Vol 8 (5) ◽  
pp. 2578-2581 ◽  
Author(s):  
H. C. Gardner ◽  
D. E. Gallardo ◽  
S. Dunn ◽  
N. Gaponik ◽  
A. Eychmüller

The layer-by-layer deposition of thin films of CdTe nanoparticles and three different polyelectrolytes has been investigated. Photoluminescence spectra were used to monitor the energy transfer properties within the films. As the number of bilayers in a thin film was increased a decrease in the energy of the light emitted was observed. The wavelength change is a two-stage process. Deposition of the first one to two bi-layers of a thin film produced a sharp energy change (626 nm to 637 nm with the addition of a single bi-layer) whereas deposition of subsequent bi-layers produced a more gradual energy change (642 nm–646 nm with the addition of 5 bi-layers). A space-filling mechanism is suggested to account for these changes; smaller nanoparticles penetrate the earlier levels of a thin film and increase the inter-particle energy transfer opportunities within the layers.


2006 ◽  
Vol 976 ◽  
Author(s):  
Yun-Hee Lee ◽  
Yong-Il Kim ◽  
Hoon-Sik Jang ◽  
Seung-Hoon Nahm ◽  
Ju-Young Kim ◽  
...  

AbstractConventional nanoindentation testing generally uses a peak penetration depth of less than 10 % of thin-film thickness in order to measure film-only mechanical properties, without considering the critical depth for a given thin film-substrate system. The uncertainties in this testing condition make hardness measurement more difficult. We propose a new way to determine the critical relative depth for general thin-film/substrate systems; an impression volume analyzed from the remnant indent image is used here as a new parameter. Nanoindents made on soft Cu and Au thin films with various indentation loads were observed by atomic force microscope. The impression volume calculated from 3D remnant image was normalized by the indenter penetration volume. This indent volume ratio varied only slightly in the shallow regime but decreased significantly when the indenter penetration depth exceeded the targeted critical relative depth. Thus, we determined the critical relative depth by empirically fitting the trend of the indent volume ratio and determining the inflection point. The critical relative depths for Cu and Au films were determined as 0.170 and 0.173, respectively, values smaller than 0.249 and 0.183 determined from the hardness variation of the two thin films. Hence the proposed indent volume ratio is highly sensitive to the substrate constraint, and stricter control of the penetration depth is needed to measure film-only mechanical properties.


2006 ◽  
Vol 21 (5) ◽  
pp. 1101-1105 ◽  
Author(s):  
S.P. Fernando ◽  
A.L. Elias ◽  
M.J. Brett

The mechanical behavior of a helically perforated thin film structure was simulated by finite element analysis. The validity of the results was confirmed by comparison to a nanoindentation measurement performed on a nickel helically perforated thin film sample. It was found that variation of the helical pitch angle from 35° to 70° resulted in a change of 1.5 times in the elastic modulus. Since the fabrication process used to create the actual samples allows for variation of the pitch angle, this result may enable the tailoring of materials for use in micro- and nanoscale devices.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qi-jing Lin ◽  
Weixuan Jing ◽  
Shu-ming Yang ◽  
Zhuang-de Jiang ◽  
Chen-ying Wang

Agglomeration and the transformation from random fractal to dendritic growth have been observed during Cu/Ti/Si thin film annealing. The experimental results show that the annealing temperature, film thickness, and substrate thickness influenced the agglomeration and dendritic growth. Multifractal spectrum is used to characterize the surface morphology quantificationally. The shapes of the multifractal spectra are hook-like to the left. Value ofΔαincreases with the annealing temperature rising, andΔfincreases from 500°C to 700°C but reduces from 700°C to 800°C. The dendritic patterns with symmetrical branches are generated in the surfaces when the thin films were annealed at 800°C.


1989 ◽  
Vol 4 (4) ◽  
pp. 755-758 ◽  
Author(s):  
J. Yahalom ◽  
D. F. Tessier ◽  
R. S. Timsit ◽  
A. M. Rosenfeld ◽  
D. F. Mitchell ◽  
...  

Copper/nickel multilayered thin-films prepared by electrodeposition have been examined in cross section by electron energy loss spectroscopy and high-resolution transmission electron microscopy. The results of the examinations provide the first direct experimental evidence of the large composition modulation across successive layers in the thin-film structure and the coherent nature of Cu/Ni interfaces.


Sign in / Sign up

Export Citation Format

Share Document