The Effect of Sintering Temperature to the Quality of Hydroxyapatite Coating on Cobalt Alloys as the Candidate of Bone Implant Prosthesis

Author(s):  
Aminatun ◽  
Dyah Hikmawati ◽  
M. Yasin

Total hip replacement (THR) that is widely used today is the cemented type, which its application will lead to aseptic loosening. To avoid the occurrence of aseptic loosening, THR coated with hydroxyapatite (HA) is required because HA is osteoconductive which can stimulate the growth of osteoblasts. This study aims to determine the optimum sinter temperature which produce HA coating suitable as implant material. To achieve these objectives, the electrophoretic deposition (EPD) conducted coating method at concentrations of HA 1,0M, voltage of 100V for 30 minutes and then sintered at temperatures are 550°C, 700°C and 900°C respectively detention for 10 minutes. The results showed that the treatment of sintering after the coating process through the EPD method affect the characteristics of the layer thus formed. Sintering process affects the crystallinity of the HA layer. The higher the sintering temperature the higher its crystallinity. The higher the crystallinity the stronger the HA layer attached to the substrate cobalt alloy. Based on this research, the selected sintering temperature was 900 °C for 10 minutes which produced a layer of HA with the best characteristics that meet the standard of implant prosthesis, the crystallinity of 89.4%, thick layer of 70.80 ± 4.18 μm, adhesion strength of 21.87 ± 0.23 MPa, the corrosion rate of 0.025 mpy and 70.3% cell viability.

Author(s):  
Christiane Caouette ◽  
Martin N. Bureau ◽  
L’Hocine Yahia

Total hip replacement is one of the most successful and frequent surgery in the world; over a million of these procedures are performed every year, and the numbers are growing with the ageing of the general population. The patients who receive these implants also are younger nowadays. Major problems however still subsist with traditional hip stems: aseptic loosening is a common cause of revision surgery. The main causes of aseptic loosening are both mechanical and biological in origin. Mechanical causes include stress shielding and micromotions at bone-implant interface, and biological causes are mainly osteolysis triggered by wear debris formation and bone remodeling. To remedy the mechanical issues, a biomimetic concept was developed (patent pending): an osseointegrated stem with mechanical properties close to those of the surrounding bone would avoid both stress shielding and micromotions phenomena. To evaluate this concept, a finite element model (FEM) was developed and used to simulate bone resorption, stress shielding and micromotions [1]. The preliminary results were promising as those problems were significantly reduced with the new prosthesis, but the model still remained to be proved accurate; its bone-implant interface was of particular interest because of its decisive influence on micromotions.


Author(s):  
Saturi Baco ◽  
Lisnawaty Bambang ◽  
Norlaila Joseph ◽  
Fouziah MD.Yassin ◽  
Nur Fadzilah Basri

Hydroxyapatite (HA) is one of the most attractive biomaterials and widely used as a bone substitute due to its compositions are similar to the minerals in teeth and bones. Understanding of natural HA properties are useful in order to produces high quality of HA. In this paper, we report an easy and low cost method to extract the natural HA from femur cow bone and subsequently sintered at different temperature from 900 oC to 1300 oC. Structural, composition and surface morphology of natural Hydroxyapatite (HA) at different sintering temperatures (900 ̊ C, 1000 ̊ C, 1100 ̊ C, 1200°C and 1300 ̊ C) were discussed. The HA structural, composition and surface morphology were studied by using X-Ray Diffractometer (XRD), Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM), respectively. The results show the main HA phases were detected in the range of 31.72o - 31.82o (2Ө) for all sintered HA corresponding to 211 plane. The crystallite size of HA increases with sintering temperature from 900 ̊C to 1100 ̊C. Spectrums of FTIR revealed the existences of functional groups of carbonate (CO3 2-), phosphate (PO4 3-) and hydroxyl (OH-) peaks. SEM micrographs presented small and homogenous grains from 900°C to 1100°C. The grains look interconnected as sintering temperature increased at 1200°C and 1300°C. From this study, sintering process was found to be an easy and low cost method to produce natural HA from femur cow bones.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Eduardo Anitua ◽  
Andreia Cerqueira ◽  
Francisco Romero-Gavilán ◽  
Iñaki García-Arnáez ◽  
Cristina Martinez-Ramos ◽  
...  

Abstract Background Calcium (Ca) is a well-known element in bone metabolism and blood coagulation. Here, we investigate the link between the protein adsorption pattern and the in vivo responses of surfaces modified with calcium ions (Ca-ion) as compared to standard titanium implant surfaces (control). We used LC–MS/MS to identify the proteins adhered to the surfaces after incubation with human serum and performed bilateral surgeries in the medial section of the femoral condyles of 18 New Zealand white rabbits to test osseointegration at 2 and 8 weeks post-implantation (n=9). Results Ca-ion surfaces adsorbed 181.42 times more FA10 and 3.85 times less FA12 (p<0.001), which are factors of the common and the intrinsic coagulation pathways respectively. We also detected differences in A1AT, PLMN, FA12, KNG1, HEP2, LYSC, PIP, SAMP, VTNC, SAA4, and CFAH (p<0.01). At 2 and 8 weeks post-implantation, the mean bone implant contact (BIC) with Ca-ion surfaces was respectively 1.52 and 1.25 times higher, and the mean bone volume density (BVD) was respectively 1.35 and 1.13 times higher. Differences were statistically significant for BIC at 2 and 8 weeks and for BVD at 2 weeks (p<0.05). Conclusions The strong thrombogenic protein adsorption pattern at Ca-ion surfaces correlated with significantly higher levels of implant osseointegration. More effective implant surfaces combined with smaller implants enable less invasive surgeries, shorter healing times, and overall lower intervention costs, especially in cases of low quantity or quality of bone.


2021 ◽  
Vol 7 (5) ◽  
pp. 56
Author(s):  
Yimin Yang ◽  
Xiaoying Li ◽  
Ziyu Liu ◽  
Dianjun Hu ◽  
Xin Liu ◽  
...  

Nanoparticles prepared by the coprecipitation method were used as raw materials to fabricate Y3Fe5O12 (YIG) ceramics by air pressureless sintering. The synthesized YIG precursor was calcinated at 900–1100 °C for 4 h in air. The influences of the calcination temperature on the phase and morphology of the nanopowders were investigated in detail. The powders calcined at 1000–1100 °C retained the pure YIG phase. YIG ceramics were fabricated by sintering at 1200–1400 °C for 10 h, and its densification behavior was studied. YIG ceramics prepared by air sintering at 1250 °C from powders calcinated at 1000 °C have the highest in-line transmittance in the range of 1000-3000 nm. When the sintering temperature exceeds 1300 °C, the secondary phase appears in the YIG ceramics, which may be due to the loss of oxygen during the high-temperature sintering process, resulting in the conversion of Fe3+ into Fe2+.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 438
Author(s):  
Shuwei Yang ◽  
Bingliang Liang ◽  
Changhong Liu ◽  
Jin Liu ◽  
Caisheng Fang ◽  
...  

The (1–x)Ca0.61La0.26TiO3-xNd(Mg0.5Ti0.5)O3 [(1–x)CLT-xNMT, x = 0.35~0.60] ceramics were prepared via microwave sintering. The effects of sintering temperature and composition on the phase formation, microstructure, and microwave dielectric properties were investigated. The results show that the microwave sintering process requires a lower sintering temperature and shorter sintering time of (1–x)CLT-xNMT ceramics than conventional heating methods. All of the (1–x)CLT-xNMT ceramics possess a single perovskite structure. With the increase of x, the dielectric constant (ε) shows a downward trend; the quality factor (Qf) drops first and then rises significantly; the resonance frequency temperature coefficient (τf) keeps decreasing. With excellent microwave dielectric properties (ε = 51.3, Qf = 13,852 GHz, τf = −1.9 × 10−6/°C), the 0.65CLT-0.35NMT ceramic can be applied to the field of mobile communications.


2008 ◽  
Vol 9 (3) ◽  
pp. 155-158 ◽  
Author(s):  
Alessandra Tellini ◽  
Vincenza Ciccone ◽  
Davide Blonna ◽  
Roberto Rossi ◽  
Antongiulio Marmotti ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 723
Author(s):  
Amani M. Basudan ◽  
Marwa Y. Shaheen ◽  
Abdurahman A. Niazy ◽  
Jeroen J.J.P. van den Beucken ◽  
John A. Jansen ◽  
...  

The installation of dental implants has become a common treatment for edentulous patients. However, concern exists about the influence of osteoporosis on the final implant success. This study evaluated whether an ovariectomy (OVX)-induced osteoporotic condition, induced eight weeks postimplantation in a rat femoral condyle, influences the bone response to already-integrated implants. The implants were inserted in the femoral condyle of 16 female Wistar rats. Eight weeks postimplantation, rats were randomly ovariectomized (OVX) or sham-operated (SHAM). Fourteen weeks later, animals were sacrificed, and implants were used for histological and histomorphometric analyses. A significant reduction in the quantity and quality of trabecular bone around dental implants existed in OVX rats in comparison to the SHAM group. For histomorphometric analysis, the bone area (BA%) showed a significant difference between OVX (34.2 ± 4.3) and SHAM (52.6 ± 12.7) groups (p < 0.05). Bone–implant contact (BIC%) revealed significantly lower values for all implants in OVX (42.5 ± 20.4) versus SHAM (59.0 ± 19.0) rats. Therefore, induction of an osteoporotic condition eight weeks postimplantation in a rat model negatively affects the amount of bone present in close vicinity to bone implants.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1077
Author(s):  
Romisuhani Ahmad ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Wan Mastura Wan Ibrahim ◽  
Kamarudin Hussin ◽  
Fakhryna Hannanee Ahmad Zaidi ◽  
...  

The primary motivation of developing ceramic materials using geopolymer method is to minimize the reliance on high sintering temperatures. The ultra-high molecular weight polyethylene (UHMWPE) was added as binder and reinforces the nepheline ceramics based geopolymer. The samples were sintered at 900 °C, 1000 °C, 1100 °C, and 1200 °C to elucidate the influence of sintering on the physical and microstructural properties. The results indicated that a maximum flexural strength of 92 MPa is attainable once the samples are used to be sintered at 1200 °C. It was also determined that the density, porosity, volumetric shrinkage, and water absorption of the samples also affected by the sintering due to the change of microstructure and crystallinity. The IR spectra reveal that the band at around 1400 cm−1 becomes weak, indicating that sodium carbonate decomposed and began to react with the silica and alumina released from gels to form nepheline phases. The sintering process influence in the development of the final microstructure thus improving the properties of the ceramic materials.


Sign in / Sign up

Export Citation Format

Share Document