Preparation of Nano Structured SiOC Thin Film for Low k Application

2010 ◽  
Vol 11 ◽  
pp. 85-88 ◽  
Author(s):  
Woo Teck Kwon ◽  
J.H. Lee ◽  
Soo Ryong Kim ◽  
H.T. Kim ◽  
Hyung Sun Kim ◽  
...  

In our study, the dielectric properties of SiOC low k thin film derived from polyphenylcarbosilane were investigated as a potential interlayer dielectrics for Cu interconnect technology. A SiOC low k thin film was fabricated onto a n-type silicon wafer by dip coating using 30wt % polyphenylcarbosilane in cyclohexane. Curing of the film was performed in air at 300°C for 2h. The thickness of the film ranges from 1 μm to 1.7 μm. The dielectric constant was determined from the capacitance data obtained from metal/polyphenylcarbosilane/conductive Si MIM capacitors and shows a dielectric constant as low as 3.26 without porosity added. The SiOC low k thin film derived from polyphenylcarbosilane shows promising application as an interlayer dielectrics for Cu interconnect technology.

2003 ◽  
Vol 766 ◽  
Author(s):  
Jin-Heong Yim ◽  
Jung-Bae Kim ◽  
Hyun-Dam Jeong ◽  
Yi-Yeoul Lyu ◽  
Sang Kook Mah ◽  
...  

AbstractPorous low dielectric films containing nano pores (∼20Å) with low dielectric constant (<2.2), have been prepared by using various kinds of cyclodextrin derivatives as porogenic materials. The pore structure such as pore size and interconnectivity can be controlled by changing functional groups of the cyclodextrin derivatives. We found that mechanical properties of porous low-k thin film prepared with mCSSQ (modified cyclic silsesquioxane) precursor and cyclodextrin derivatives were correlated with the pore interconnection length. The longer the interconnection length of nanopores in the thin film, the worse the mechanical properties of the thin film (such as hardness and modulus) even though the pore diameter of the films were microporous (∼2nm).


2012 ◽  
Vol 1399 ◽  
Author(s):  
Kajal Jindal ◽  
Monika Tomar ◽  
Vinay Gupta

ABSTRACTTemperature dependent optical properties of RF-sputtered c-axis oriented ZnO:N thin film have been investigated. Surface Plasmon modes are excited at the metal-dielectric interface in the Kretschmann-Reather configuration using prism coupling technique. Effect of ZnO:N thin film deposited over Prism-Au structure on the SPR reflectance is studied over a wide range of temperature from 300–500 K at 633 nm wavelength. The value of dielectric constant of ZnO:N film obtained by fitting the experimentally obtained data with the theoretically generated SPR curve at the optical frequency is found to increase linearly with temperature. The increase in dielectric constant (4.03 to 4.11) with increase in temperature from 300 K to 500 K indicates a promising application of the system as an efficient low-cost temperature sensor.


1990 ◽  
Vol 200 ◽  
Author(s):  
S. Matsubara ◽  
T. Sakuma ◽  
S. Yamamichi ◽  
H. Yamaguchi ◽  
Y. Miyasaka

ABSTRACTSrTiO3 thin film preparation onto Si substrates using RF magnetron sputtering has been studied for a high capacitance density required for the next generation of LSI's. Structural and chemical analysis on the interface between SrTiO3 film and Si was carried out with cross-sectional TEM, EDX, and AES. Dielectric properties were measured on AuTi/SrTiO3/Si/Ti/Au capacitors. The as-grown dielectric films on Si were analyzed and found to consist of three layers; SiO2, amorphous SrTiO3 and crystalline SrTiO3, from interface toward film surface. By annealing at 600 °C, the amorphous SrTiO3 layer was recrystallized, and consequently the capacitance value increased. A typical specific capacitance was 4.7 fF/μm2 and the leakage current was in the order of 10−8 A/cm2, for 180 nm thick SrTiO3 film. The dielectric constant decreased from 147 to 56 with decreasing SrTiO3 film thickness from 480 nm to 80 nm. This is due to the low dielectric constant SiO2 layer (ε=3.9) at the interface. From the film thickness dependence of the ε value, the SiO2 layer thickness was calculated to be 3.9 nm, which agreed well with the value directly observed in the TEM.To avoid SiO2 layer formation, barrier layers between SrTiO3 and Si have been studied. Among various refractory and noble metals, RuSi and a multi-layer of Pt/Ti have been found to be promising candidates for the barrier material. When RuSi film or Pt/Ti film was formed between SrTiO3 film and Si substrate, dielectric constant of about 190 was obtained in dependent of the SrTiO3 film thickness in the range of 80–250 nm. Analysis on the barrier layers was performed by means of RBS, XPS and XRD.


2002 ◽  
Vol 716 ◽  
Author(s):  
Yoshiaki Oku ◽  
Norikazu Nishiyama ◽  
Shunsuke Tanaka ◽  
Korekazu Ueyama ◽  
Nobuhiro Hata ◽  
...  

AbstractWe have recently developed novel periodic nanoporous silicate glass with high structural stability as low-k thin film by spin-coating method. Periodic porous silicate glass films developed so far cause structural shrinkage (10>∼20% or more) by annealing the spin-coated films. In this investigation we adopt vapor-phase TEOS (tetraethoxysilane)-treatment before anneal. Our novel nanoporous film shows little shift of XRD peak position after annealed at 673K, indicating both the ultimate mechanical strength and the minimization of stress in the interface between the prepared film and the underlying substrate. Such a shrinkage-free periodic nanoporous silica film can possess higher VBD (break down voltage) and lower ILeak (leakage current). In this article we estimate structural properties (including information on pores introduced intentionally) by XRD and TEM observation, and electrical properties (dielectric constant, VBD and ILeak) by IV and CV measurement of this special-treated periodic nanoporous silica film. The dielectric constant of the thus prepared periodic porous silica film with silylation after calcination was evaluated to be around 1.8 at 100kHz.


2007 ◽  
Vol 989 ◽  
Author(s):  
Zomer Silvester Houweling ◽  
Vasco Verlaan ◽  
Karine van der Werf ◽  
Hanno D. Goldbach ◽  
Ruud E I Schropp

AbstractFor silicon nitride (SiNx) deposited at 3 nm/s using hot wire chemical vapor deposition (HWCVD), the mass-density reached an ultra high value of 3.0 g/cm3. Etch rates in a 16BHF solution show that the lowest etch rate occurs for films with a N/Si ratio of 1.2, the ratio where also the maximum in mass density occurs. The thus found etch rate of 7 nm/min is much better than that for PECVD layers, even when made at a much lower deposition rate. The root-mean-square (rms) roughness measured on 300 nm thick SiN1.2 layers is only about 1 nm, which is advantageous for obtaining high field-effect mobility in thin-film transistors. SiN1.2 films have succesfully been tested in “all hot wire” thin film transistors (TFTs). SiNx films with various x values in the range 1.0 < × <1.5 have been incorporated in metal-insulator-semiconductor structures with n-type c-Si wafers to determine their electrical properties from C-V and I-V measurements. We analyzed the behavior of the static dielectric constant, fixed nitride charges and trapped nitride charges as function of N/Si ratio. I-V measurements show that the HW SiNx films with N/Si ≥ 1.33 have high dielectric breakdown fields that exceed 5.9 MV/cm. For these films we deduce a low positive fixed nitride charge density of 6.2-7.8 × 1016 cm-3 from the flat band voltage and from the small hysteresis in the backward sweep we deduce a low fast trapped charge density of 1.3-1.7 × 1011 cm-2. The dielectric constant ε for different compositions is seen not to change appreciably over the whole range and amounts to 6.3 ± 0.1. These high-density SiNx films possess very low tensile stress (down to 16 MPa), which will be helpful in for instance, plastic electronics applications. HWCVD provides high quality a-SiNx materials with good dielectric properties at a high deposition rate.


1991 ◽  
Vol 243 ◽  
Author(s):  
Shintaro Yamamichi ◽  
Toshiyuki Sakuma ◽  
Takashi Hase ◽  
Yoichi Miyasaka

AbstractSrTiO3 and (Ba,Sr)TiO3 thin films have been prepared by ion beam sputtering on Pd coated sapphire substrates. Film compositions were almost the same as target compositions when powder targets were used. Capacitance-voltage characteristics depended on Sr/Ti ratio of the SrTiO3 films. Only small changes of capacitance value were observed in the range from -3V to 3V when the Sr/Ti ratio was 1.0. Compared with rf-magnetron sputtered film, ion beam sputtered SrTiO3 film indicated lower leakage current density in 50nm thickness. In (Bax,Sr1-x)TiO3 thin films, dielectric constant changed with Ba content (x) and showed a maximum at x=0.5. It also changed with the firing temperature of target powder. The highest value was obtained by using the target powder fired at 900°C. A 100nm thick (Ba0.5,Sr0.5)TiO3 thin film indicated a dielectric constant value of 320.


2015 ◽  
Vol 1134 ◽  
pp. 6-11 ◽  
Author(s):  
Mohamad Hafiz Mohd Wahid ◽  
Rozana Mohd Dahan ◽  
Siti Zaleha Sa'ad ◽  
Adillah Nurashikin Arshad ◽  
Muhamad Naiman Sarip ◽  
...  

The enhancement of ferroelectric and dielectric properties of PVDF-TrFE by incorporating various percentages of Magnesium Oxide (1 – 7%) for spin coated nanocomposite thin film was demonstrated. Observations showed uniform distribution and low agglomeration of MgO in the PVDF-TrFE nanocomposite thin film, especially for 3% MgO. Additionally, the 3% MgO incorporated into PVDF-TrFE had generated the highest Pr (88 mC/m2) and dielectric constant (13.6) in comparison other percentage compositions. However, the addition of more than 3% MgO filler loading caused a reduction in the ferroelectric and dielectric properties of the nanocomposite thin films.


2011 ◽  
Vol 1335 ◽  
Author(s):  
Shaoning Yao ◽  
Vincent McGahay ◽  
Matthew S. Angyal ◽  
Andrew H. Simon ◽  
Tom C. Lee ◽  
...  

ABSTRACTThis paper introduces a highly reliable Cu interconnect technology at the 32 nm node with CuMn alloy seed. A CuMn alloy liner seed process combined with a non-gouging liner has been integrated into the minimum-pitch wiring level. Stress migration fails with CuMn seed at plate-below-via structures were shut down by a non-gouging liner process. Integration with gouging liner and non-gouging liner is compared, and results of interaction with CuMn seed are discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document