The Collapse Characteristics of CFRP Hat-Shaped Section Members under Axial Compression

2006 ◽  
Vol 321-323 ◽  
pp. 877-880 ◽  
Author(s):  
Kil Sung Lee ◽  
In Young Yang

The front-end side members of automobiles, such as the hat-shaped section member, absorb the most of the energy during the front-end collision. The side members absorb more energy in collision if they have higher strength and stiffness, and stable folding capacity (local buckling). Using the above characteristics on energy absorption, vehicle should be designed light-weight to improve fuel combustion ratio and reduce exhaust gas. Because of their specific strength and stiffness, CFRP are currently being considered for many structural (aerospace vehicle, automobiles, trains and ships) applications due to their potential for reducing structural weight. Although CFRP members exhibit collapse modes that are significantly different from the collapse modes of metallic materials, numerous studies have shown that CFRP members can be efficient energy absorbing materials. In this study, the CFRP hat-shaped section members were manufactured using a uni-directional prepreg sheet of carbon/Epoxy and axial collapse tests were performed for the section members. The collapse mode and the energy absorption capability of the section members were analyzed under the static load.

2006 ◽  
Vol 324-325 ◽  
pp. 411-414
Author(s):  
Kil Sung Lee ◽  
Kwang Hee Im ◽  
In Young Yang

The purpose of this study was to develop lightweight hat shaped section side members which absorb the most of the energy during the front-end collision of vehicle. The hybrid side member was manufactured by combination of aluminum and CFRP. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) member is representative lightweight materials but its axial collapse mechanism is different from each other. The aluminum member absorbs energy by stable plastic deformation, while the CFRP member absorbs energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. Based on the respective collapse characteristics of CFRP side and aluminum members, the hybrid side members were tested on the axial collapse loads to get a synergy effect when the member is combined with the advantages of each members, such as energy absorption by the stable folding deformation of the aluminum member and by the high specific strength and stiffness of the CFRP member. Energy absorption capability and collapse mode of the hybrid side members were analyzed.


2006 ◽  
Vol 321-323 ◽  
pp. 881-884
Author(s):  
In Young Yang ◽  
Kil Sung Lee ◽  
Cheon Seok Cha

In this study, the impact collapse tests were performed to investigate collapse characteristics of Al/CFRP member which were composed of aluminum members wrapped with CFRP (Carbon Fiber Reinforced Plastics) outside aluminum member. Aluminum members absorb energy by stable plastic deformation, while CFRP members absorb energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. In an attempt to achieve a synergy effect by combing the two members, Al/CFRP members were manufactured and impact collapse tests were performed for the members. Based on the respective collapse characteristics of aluminum and CFRP members, the collapse modes and energy absorption capability were analyzed for Al/CFRP member which have different fiber orientation angle of CFRP. Test results showed that the collapse of the Al/CFRP member complemented unstable brittle failure of the CFRP member due to ductile nature of the inner aluminum member and the fiber orientation angle of Al/CFRP members influence energy absorption capability and collapse mode.


2013 ◽  
Vol 535-536 ◽  
pp. 389-392
Author(s):  
Woo Chae Hwang ◽  
In Young Yang ◽  
Yong Jun Yang

Transport is the safety and comfortableness during the transportation of passenger to desired location. Therefore, goals in transport design can be summarized as environment-friendliness and safety. Demand for weight reduction of transport has been growing in order to solve the environmental problems. In many countries, environment conservation forces the enhanced regulation on gas mileage and emission gas due to exhaustion of energy resource, adding an extra weight of environment pollution. CFRP(Carbon Fiber Reinforced Plastic) which the advanced composite materials has a widely used in lightweight structural materials of aircraft, ship and vehicle because of high strength and stiffness. In this study, collapse mode and energy absorption capability double CFRP hat-shaped section members were analyzed. The stacking condition were selected to investigate the effect of the fiber orientation angle (±15°, ±45°, 90°, 90°/0°and 0°/90° where 0°direction coincides with axis of the member)on the energy absorption of the CFRP double hat-shaped section members. The collapse mode and energy absorption capability of CFRP double hat-shaped section members was analyzed according to the change of the fiber stacking condition of CFRP.


This proposal defines the difference between the double hat section tubes &rectangular section for tremble energy consumption like in crash worth applications. The primary objective of this study is to “to gather information regarding the energy absorption & impact of double and single cap section tubes and to apply them in the system where energy absorption takes place.The double-hat and thin-walled top-hat in which spot-welded by quasi-static axial method. Many tests were identified such as associated energy-absorbing characteristics and several post-test collapse mode where scrutinized and compared with other previous tests. The best model was selected by crush analysis in universal testing machine by comparison of parameters such as mean force and energy absorbers. The efficient model is selected by comparatively lesser mean force and higher energy absorption


2021 ◽  
Vol 8 ◽  
Author(s):  
Sabah Salim Hamza ◽  
Al Emran Ismail ◽  
M. Y. Yuhazri ◽  
Ahmad Hamdan Ariffin ◽  
Mohamed Thariq Hameed Sultan

The use of metallic materials in automotive industry leads to increasing fuel consumption and cost, so trends are starting to use lighter and cheaper materials. In automotive applications, fibers are used in composites because they are stronger, stiffer, and lighter than bulk materials, and they can achieve higher energy absorbing compared to metallic materials. The purpose of this work is to study the potential utilization of natural fibers in the crash energy absorbing applications. The experimental procedures (the principle of a combination of manual layup and vacuum bladder technique) were applied to search the influence of utilizing jute fiber mat on crashworthiness parameters of composite materials with other kinds of fibers such as woven glass fiber reinforced epoxy composites. The study involved corrugated composite tubes with three layers of jute and hybrid glass-jute/epoxy material have been tested in uniaxial quasi-static crush conditions at the speed 10 mm/min. The results exhibit that the tube of jute fiber was somewhat lower than synthetic fibers, but the substitution of one layer of jute fiber with one layer of glass fiber resulted in an improvement in the crashworthiness parameters. As hybrid jute-glass was used, the best result was obtained, where energy absorption and specific energy absorption are improved by 17.75% and 25.122%, respectively.


2007 ◽  
Vol 539-543 ◽  
pp. 1707-1712 ◽  
Author(s):  
Suk Bong Kang ◽  
Hyoung Wook Kim ◽  
Sang Su Jeong ◽  
Jae Woon Kim

Magnesium alloys have been known as the best lightweight metallic materials for various applications of electronic equipments and automobile parts due to high specific strength and stiffness. The needs for wrought magnesium alloys have been increased for the application to structural parts in the form of sheets and bars. However, magnesium has a hexagonal closed-packed (HCP) crystal structure with a limited number of operative slip systems at room temperature, and its formability is restricted to mild deformation. The improvement of the formability of magnesium sheets for real applications is important. In order to increase formability of magnesium sheets at elevated temperature, one promising way is a grain refinement.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3047
Author(s):  
Kamil Czech ◽  
Rafał Oliwa ◽  
Dariusz Krajewski ◽  
Katarzyna Bulanda ◽  
Mariusz Oleksy ◽  
...  

Polymer fiber composites are increasingly being used in many industries, including the defense industry. However, for protective applications, in addition to high specific strength and stiffness, polymer composites are also required to have a high energy absorption capacity. To improve the performance of fiber-reinforced composites, many researchers have modified them using multiple methods, such as the introduction of nanofillers into the polymer matrix, the modification of fibers with nanofillers, the impregnation of fabrics using a shear thickening fluid (STF) or a shear thickening gel (STG), or a combination of these techniques. In addition, the physical structures of composites have been modified through reinforcement hybridization; the appropriate design of roving, weave, and cross-orientation of fabric layers; and the development of 3D structures. This review focuses on the effects of modifying composites on their impact energy absorption capacity and other mechanical properties. It highlights the technologies used and their effectiveness for the three main fiber types: glass, carbon, and aramid. In addition, basic design considerations related to fabric selection and orientation are indicated. Evaluation of the literature data showed that the highest energy absorption capacities are obtained by using an STF or STG and an appropriate fiber reinforcement structure, while modifications using nanomaterials allow other strength parameters to be improved, such as flexural strength, tensile strength, or shear strength.


2014 ◽  
Vol 875-877 ◽  
pp. 534-541 ◽  
Author(s):  
Chawalit Thinvongpituk ◽  
Nirut Onsalung

In this paper, the experimental investigation of polyurethane (PU) foam-filled into circular aluminum tubes subjected to axial crushing was presented. The purpose of this study is to improve the energy absorption of aluminium tube under axial quasi-static load. The aluminium tube was made from the AA6063-T5 aluminium alloy tubes. Each tube was filled with polyurethane foam. The density of foam was varied from 100, 150 and 200 kg/mP3P including with empty tube. The range of diameter/thickness (D/t) ratio of tube was varied from 15-55. The specimen were tested by quasi-static axial load with crush speed of 50 mm/min using the 2,000 kN universal testing machine. The load-displacement curves while testing were recorded for calculation. The mode of collapse of each specimen was analyzed concerning on foam density and the influence of D/t ratio. The results revealed that the tube with foam-filled provided significantly increment of the energy absorption than that of the empty tube. While the density of foam and D/t ratios increase, the tendency of collapse mode is transformed from asymmetric mode to concertina mode.


2019 ◽  
Vol 49 (1) ◽  
pp. 327-359 ◽  
Author(s):  
Alan Taub ◽  
Emmanuel De Moor ◽  
Alan Luo ◽  
David K. Matlock ◽  
John G. Speer ◽  
...  

Reducing the weight of automobiles is a major contributor to increased fuel economy. The baseline materials for vehicle construction, low-carbon steel and cast iron, are being replaced by materials with higher specific strength and stiffness: advanced high-strength steels, aluminum, magnesium, and polymer composites. The key challenge is to reduce the cost of manufacturing structures with these new materials. Maximizing the weight reduction requires optimized designs utilizing multimaterials in various forms. This use of mixed materials presents additional challenges in joining and preventing galvanic corrosion.


2000 ◽  
Vol 646 ◽  
Author(s):  
Fritz Appel ◽  
Helmut Clemens ◽  
Michael Oehring

ABSTRACTIntermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently in use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through specific comments on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is placed on recent developments of TiAl alloys with enhanced high-temperature capability.


Sign in / Sign up

Export Citation Format

Share Document