Manufacturing of Polymer Matrix Composite Material Using Marble Dust and Fly Ash

2007 ◽  
Vol 336-338 ◽  
pp. 1353-1356 ◽  
Author(s):  
Metin Gürü ◽  
Süleyman Tekeli ◽  
Emin Akin

The amount of marble dust occurred during machining and cutting of marble pieces and fly ash emitted from coal power plant is rather high and these wastes create significant environmental pollution. In fact, these wastes can be utilized in various industrial applications. In this study, various amount of fly ash, marble dust and polyester as base material, methyl ethyl keton peroxid as hardener and cobalt naphtanats as accelerator were used to produce polyester matrix composite material. Mechanical properties of composite materials were investigated and the optimum values were determined. In the first step of the manufacturing of composite material, the amounts of hardener, accelerator and polyester were kept constant and only fly ash/marble dust ratio was changed. The experimental results showed that while fly ash/marble dust ratio up to 1/3 was increased, the strength and hardness of the composite materials increased. Thus, the composite materials with high strength and hardness were produced. The optimum three point bending strength and hardness values were 30.42 N/mm2 and 98 Shore A, respectively. In the second step, the amounts of hardener, accelerator and fly ash/marble dust ratio were kept constant and the effects of the change in the amount of polyester were investigated. It was seen that the highest tree point bending strength and hardness were obtained at polyester/filler (marble dust +fly ash) ratio of 0,38. The optimum three point bending strength and hardness values were 32.78 N/mm2 and 99 Shore A, respectively.

Author(s):  
I. V. Zlobina ◽  
I. S. Katsuba

Experimental studies of the influence of external climatic factors, taking into account exposure, on the change in the bending strength of control and microwave – treated carbon and fiberglass samples in the cured state were performed. An increase in the limit stresses of three – point bending of experimental carbon fiber samples compared to the control ones was found by 7…12 %, and fiberglassby 4…7 %. It is shown that with an increase in exposure to 14 months, the strength of control samples of carbon and fiberglass decreases by an average of 10 %. At the same time, the strength of the prototypes is reduced only by 4.4 %. With an increase in the moisture content of both control and experimental samples, a decrease in their strength is observed. In this case, the linear correlation is average (from– 0.44 to – 0.615). It is established that for experimental samples, the influence of the amount of absorbed moisture on the strength is manifested to a much lesser extent. For carbon fiber, the reduction is 16.6 %, for fiberglass – 12 %.


2021 ◽  
Vol 889 ◽  
pp. 27-31
Author(s):  
Norie A. Akeel ◽  
Vinod Kumar ◽  
Omar S. Zaroog

This research Investigates the new composite materials are fabricated of two or more materials raised. The fibers material from the sources of natural recycled materials provides certain benefits above synthetic strengthening material given that very less cost, equivalent strength, less density, and the slightest discarded difficulties. In the current experiments, silk and fiber-reinforced epoxy composite material is fabricated and the mechanical properties for the composite materials are assessed. New composite materials samples with the dissimilar fiber weight ratio were made utilizing the compression Molding processes with the pressure of 150 pa at a temperature of 80 °C. All samples were exposed to the mechanical test like a tensile test, impact loading, flexural hardness, and microscopy. The performing results are the maximum stress is 33.4MPa, elastic modulus for the new composite material is 1380 MPa, and hardness value is 20.64 Hv for the material resistance to scratch, SEM analysis of the microstructure of new composite materials with different angles of layers that are more strength use in industrial applications.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Muhammad Zulkifli

The main purpose of this research is to study the microstructure and thermal properties of geopolymers by adding ZnO as a functional composite. Functional composite materials synthesized by alkali activation, using metalempung as the base material and ZnO as aggregate. ZnO was synthesized from ZnSO4 using the precipitation method. The addition of ZnO mass in geopolymer paste was varied from 0.10g; 0.20g; and 0.30g. X-Ray Difraction (XRD) was used to determine the phase formed in functional composite material. The thermal characteristic of the samples was examined by means of Differential Scanning Calorimetry (DSC). The results showed that the composition of ZnO did have a significant effect on changes in microstructure sample. Functional composite materials also had entalphy change and exsoterm peak smaller than sample geopolymer


2020 ◽  
Vol 19 (3) ◽  
pp. 187-194
Author(s):  
Oki Kurniawan ◽  
Willy Artha Wirawan ◽  
Akbar Zulkarnain

Abstract The use of composite materials has been developed in the railroad transportation industry sector in Indonesia. For example, PT INKA has used composite materials with fiber glass reinforcement. The purpose of this study is to determine the characteristics of tensile strength and bending strength of the composite material so that it can be proposed to be further developed and utilized by the manufacturing industry, especially the railroad industry. In this study, 4 types of matrix variations were examined, namely epoxy, repoxy, polyester, and bhispenol using fiber glass reinforcement. Tensile strength and bending strength tests were performed in accordance with the ASTM D-638 and the ASTM D-790 standards, respectively. The results of this study indicate that the variation of the matrix is very influential on the tensile strength and bending strength of composite materials. Keywords: composite material, glass fiber, tensile strength, bending strength  Abstrak Penggunaan material komposit mulai banyak dikembangkan di sektor industri trasportasi kereta api di Indone-sia. Sebagai contoh, PT INKA sudah menggunakan material komposit dengan penguat serat gelas. Tujuan penelitian ini adalah untuk mengetahui karakteristik kekuatan tarik dan kekuatan bending material komposit agar dapat diusulkan untuk lebih dikembangkan dan dimanfaatkan oleh industri manufaktur, khususnya industri kereta api. Pada penelitian ini digunakan 4 jenis variasi matriks, yaitu epoxy, repoxy, polyester, dan bhispenol dengan menggunakan penguat serat gelas. Pengujian kekuatan tarik menggunakan standar ASTM D-638 dan pengujian bending menggunakan standar ASTM D-790. Hasil studi ini menunjukkan bahwa variasi matriks sangat berpengaruh pada kekuatan tarik maupun kekuatan bending material komposit. Kata-kata kunci: material komposit, serat gelas, kekuatan tarik, kekuatan bending


2021 ◽  
Vol 25 (4) ◽  
pp. 89-98
Author(s):  
Yu.G. Skurydin ◽  
◽  
E.M. Skurydina ◽  

Structural features and physical and mechanical characteristics of plate composite materials are investigated. The materials are obtained from hydrolyzed birch wood by hot pressing without the addition of binding components. Wood processing is carried out by the method of explosive autohydrolysis without chemical reagents. The influence of pre-moistening of wood on the structure and properties of the composite material is studied. The structural features of the amorphous and crystalline components of the composite material are studied. It was found that the composite material obtained from pre-dried and pre-moistened wood retains the crystalline phase that is present in the original wood. Changes in the structure of wood when obtaining composite materials based on it occur in the amorphous component. Based on the temperature dependences of the dynamic shear modulus and the tangent of the angle of mechanical losses, information on the glass transition temperature of a complex of amorphous components of a composite material is obtained. It was found that the region of transition of lignin and hemicellulose macrochains from a glassy to a highly elastic state in the composite material is shifted towards low temperatures in comparison with the original wood. The offset is more than 70K. It is assumed that structural plasticization is the main cause of the detected effect. Pre-moistening of wood does not affect the position of the temperature transition in the amorphous component of the composite material. The study of the diffusion and sorption of water vapor in the samples of the material shows the presence of large structural inhomogeneities. Diffusion processes obey Fick’s second law and correlate with the density of samples. Data on density, static bending strength, water absorption and swelling characteristics of composite material samples were obtained. It is shown that the use of pre-moistening of wood before barothermal treatment significantly improves the structural uniformity of the resulting material. The value of the dynamic shear modulus at room temperature in comparison with the same indicator for the material obtained on the basis of dry wood increases three times. Mechanical losses are reduced, mechanical strength increases.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajat Yadav ◽  
Shashi Prakash Dwivedi ◽  
Vijay Kumar Dwivedi ◽  
Anas Islam

Purpose This study aims to attempt to make an aluminum-based composite using reinforcement such as graphite and fly ash. Pollution is an enhanced serious issue of concern for global. Industries play a major role in disturbing the balance of the environment system. Composite is made by using the stir casting technique. The waste that is generated by the industries if left untreated or left to be rotten at some place may prove fatal to invite various types of diseases. Proper treatment of these wastes is the need of the hour, the best way to get rid of such kinds of hazardous wastes is to use them by recycling. Design/methodology/approach Stir casting technique was used to make a composite. Graphite and fly ash were mixed with equal amounts of 2.5% to 15% in aluminum. The microstructure of composite formed after composite was noticed. After seeing the microstructure it was understood that reinforcement particles are very well-mixed in aluminum. Findings When graphite was mixed with 3.75% and 3.75% fly ash in aluminum, the strength of the composite came to about 171.12 MPa. As a result, the strength of the composite increased by about 16.10% with respect to the base material. In the same way, when 3.75% graphite and 3.75% fly ash were added to aluminum, the hardness of the composite increased by about 26.60%. Originality/value In this work, graphite and fly ash have been used to develop green metal matrix composite to support the green revolution as promoted/suggested by United Nations, thus reducing the environmental pollution. The addition of graphite and fly ash to aluminum reduced toughness. The thermal expansion of the composite has also been observed to know whether the composite made is worth using in higher temperatures.


2018 ◽  
Vol 68 (1) ◽  
pp. 33-50 ◽  
Author(s):  
Ranakoti Lalit ◽  
Pokhriyal Mayank ◽  
Kumar Ankur

Abstract Now days, green composite materials are now gaining popularity for the various industrial applications. It is a combination of naturally occurring reinforcement like jute, sisal, flax, hemp, and kenaf; and matrix materials like biopolymers or bio resins which have been derived from starch, and vegetable oils. It is becoming more desirable due to its properties like biodegradability, renewability and environment friendly. The present paper presents the various natural fibers and their combinations with biopolymers. The paper also reflects the key issue related to hydrophilic nature of natural fibers and their remedies for a good fiber and bio polymer adhesion. Furthermore the strategy used and major attributes of the green composite are also discussed.


2013 ◽  
Vol 20 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Ismail Zorluer ◽  
Abdullah Demirbas

AbstractMarble dust and fly ash are waste materials and used in various area and industries as an additive material. However, there are still significant amounts of marble dust and fly ash left as waste. Therefore, the reuse of these wastes provides benefits to reduce construction costs and increase sustainability. In this study, a laboratory testing program was conducted on granular soil specimens amended with marble dust and fly ash. The specimens were prepared with granular soil and marble dust-fly ash at different mixing ratios. They were compacted with standard and modified Proctor energies. The specimens were subjected to unconfined compression, California bearing ratio, and freezing-thawing tests. The results of the study show that the strength of a specimen is dependent on the additive ratio, the curing period, compaction energy, and the number of freeze-thaw (F-T) cycles. Generally, unconfined compressive strength (qu) and California bearing ratio (CBR) increased with additive materials, curing times, and high compaction energy. qu decreased and weight loss increased with increasing additives and increasing F-T cycles.


Sign in / Sign up

Export Citation Format

Share Document