An Investigation of Surface Grinding Characteristics for Titanium Alloy with CBN Wheel

2007 ◽  
Vol 364-366 ◽  
pp. 237-242 ◽  
Author(s):  
Shen Yung Lin ◽  
Y.C. Liu ◽  
C.W. Huang

This study performs an experiment to investigate the effect of process variables such as rotational cutting speeds of the wheel, feed rate of the work-table and grinding depth of cut on surface roughness and the fluctuations of grinding forces for Ti-6Al-4V titanium alloy. STP-1623 ADC surface grinding machine, grinding wheel with CBN material sintering and Ti-6Al-4V titanium alloy workpiece are used in the experiment. The roughness of the grinding surface was measured by the roughness measuring instruments and the fluctuations of grinding forces were measured through dynamometer after each surface layer ground from the workpiece in the experiment. The grinding performance can be ascertained from the signal fluctuations phenomena of the grinding forces both along normal and tangential directions, which may also be utilized as an index for the quality of surface finish judgment. The results show that excellent surface quality being always consistent with the stable grinding force fluctuations and can be obtained under the conditions of slow feed rate of the work-table, high revolutions of the wheel and shallow depth of cut.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

This article presents a new model of the flat surface grinding process vibration conditions. The study establishes a particular analysis and comparison between the influence of the normal and tangential components of grinding forces on the vibration conditions of the process. The bifurcation diagrams are used to examine the process vibration conditions for the depth of cut and the cutting speed as the bifurcation parameters. The workpiece is considered to be rigid and the grinding wheel is modeled as a nonlinear two-degrees-of-freedom mass-spring-damper oscillator. To verify the model, experiments are carried out to analyze in the frequency domain the normal and tangential dynamic grinding forces. The results of the process model simulation show that the vibration condition is more affected by the normal component than the tangential component of the grinding forces. The results of the tested experimental conditions indicate that the cutting speed of 30 m/s can permit grinding at the depth of cut up to 0.02 mm without sacrificing the process of vibration behavior.


Author(s):  
Nguyen Hong Son ◽  
Do Duc Trung

In this paper, the analysis on the effects of cutting parameters on surface roughness of workpieces in surface grinding has been conducted. Experimental SUJ2 steel grinding process is made with CBN grinding wheel. The tests is made on an APSG-820/2A surface grinder. The Box- Behnken method has been used to design experiments. Minitab 16 statistical software has been used to analyze ANOVA test results. The results show that the feed-rate has the greatest effect on surface roughness, followed by the least effects of velocity of workpiece, depth of cut on surface roughness. The interaction between velocity of workpiece and depth of cut has the greatest effect on surface roughness, followed by the effects of the interaction between the feed-rate and depth of cut, the interaction between velocity of workpiece and the feed-rate has insignificant effects on surface roughness. This study also shows the value range of some cutting parameters for processing surface of workpiece with small roughness. Finally, a regression model of surface roughness has been established in this study.


2006 ◽  
Vol 304-305 ◽  
pp. 151-155 ◽  
Author(s):  
Zhao Hui Deng ◽  
Bi Zhang ◽  
F. Cheng

This study focuses on experimental and theoretical investigations of grinding forces for nanostructured WC/12Co coatings. In this study, nanostructured WC/12Co coatings are ground on a precision surface-grinding machine with four diamond wheels of two bond types and three grit sizes. A mathematical model is proposed to predict grinding forces per unit area and per grit, and is used to fit the experimental data. The model is also subsectioned into two different parts with one part fitting grinding forces for the smaller grit depth of cut condition and the other part for the larger grit depth of cut condition. Grinding mechanisms are also discussed in terms of grinding forces and grit depth of cut.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040135
Author(s):  
Phi-Trong Hung ◽  
Hoang-Tien Dung ◽  
Nguyen-Kien Trung ◽  
Truong-Hoanh Son

The grinding process of Titanium (Ti) alloys is extremely difficult as the cutting temperature is much higher than other machining processes due to the low thermal conductivity, high chemical reactivity, and rapid work hardening during machining of Ti alloys. This research investigates the effect of technology parameters on the surface roughness in the surface grinding of Ti–6Al–4V (Ti64) alloy with resinoid cBN grinding wheel. The experimental results show that the surface roughness is significantly affected by the feed rate, depth of cut (DOC) and cooling condition. Increasing feed rate or DOC all provides the higher surface roughness. The surface roughness obtained in the wet grinding is higher than those of the dry cutting. The scanning electron microscopy (SEM) images of Ti64 surfaces show that the machining surface with fewer defects can be produced with wet grinding process.


2020 ◽  
Vol 19 (02) ◽  
pp. 235-248
Author(s):  
Hai Zhou ◽  
Jiahui Wei ◽  
Fang Song ◽  
Yongkang Li ◽  
Chuanjin Huang ◽  
...  

The (010) and (100) planes of a [Formula: see text]-Ga2O3 crystal were subjected to precision grinding tests with a resin bond diamond grinding wheel on a precision surface grinding machine. The grinding characteristics and surface grinding quality of the planes of the [Formula: see text]-Ga2O3 crystal were analyzed on the basis of grinding force, grinding force ratio, specific energy, and surface morphology. The (010) plane shows a larger grinding force and specific energy but a smaller grinding force ratio compared with the (100) plane. Under experimental conditions, the normal and tangential grinding forces of the (010) plane are 1.4–2.2 and 2.6–7.8 times that of the (100) plane, respectively. The specific energy of the (010) plane is 2.8–6.1 times that of the (100) plane, and the grinding force ratio of the (100) plane is 1.4–3.7 times that of the (010) plane. Under the same grinding conditions, the material removal methods for the two planes are evidently different. The (010) plane is mainly removed by brittle fracture and accompanied by a minimal broken area, whereas the (100) plane is mainly removed by cleavage layering and exhibits numerous block cleavage. The (100) plane is the strong cleavage surface, and the (100) plane demonstrates a higher surface roughness than the (010) plane under the same grinding conditions.


2014 ◽  
Vol 496-500 ◽  
pp. 1189-1192
Author(s):  
Ying Hua Liao ◽  
Yong Wang ◽  
Liang Dong Zhang

According to inner cooling surface grinding mechanism, a device for inner cooling surface grinding in a general surface grinding machine M7130 is developed. And the device includes there parts, i.e. grinding wheel with radial holes, grinding carriage and cutting fluid system. When grinding, cutting fluid provided by the cutting fluid system is directly sprayed into the grinding zones through the radial holes of the grinding wheel under the action of centrifugal force, and the closure of the grinding zones is destroyed. So the cooling effect of cutting fluid is improved and the grinding temperature is reduced. Further, grinding burn and crack are effectively avoided and the quality of planet grinding is improved. The grinding of difficult-to-machine materials such as Titanium alloy can be realized with the help of general surface grinding machine of the developed device.


2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


This research is a study of the turning process by testing with brass material. There are three control factors: spindle of speed, feed rate, and depth of cut respectively. The turning process requires variable control,affect the quality of production productivity and production costplanning an experiment with the Taguchi Method help in theexperiment the analysis of variance, orthogonal array, and signal and noise ratios were considered as an experiment and survey of brass turning characteristics to determine the lowest material removal rate.The results obtained from the experiment were used to repeat the experiment for confirmation. This requires the turning process to be reliable and optimized


2009 ◽  
Vol 76-78 ◽  
pp. 163-168 ◽  
Author(s):  
Taghi Tawakoli ◽  
Abdolreza Rasifard ◽  
Alireza Vesali

The efficiency of using of CBN grinding wheels highly depends on the dressing process as well as on the coolant lubricant used. The Institute of Grinding and Precision Technology (KSF) investigated the performance of vitrified CBN grinding wheels -being dressed using different parameters- while using two different grinding oils and two different water-miscible coolant lubricants. The obtained results show that the performance of the vitrified CBN grinding wheels regarding the quality of the workpiece surface, the grinding forces as well as the wear of the grinding wheel, highly depend on the dressing conditions and the type of the coolant lubricant used. Compared to the water-miscible coolant lubricants, the grinding oils show better results.


Sign in / Sign up

Export Citation Format

Share Document