Single-Point Diamond Turning of Plasma-Nitrided Stainless Steel

2007 ◽  
Vol 364-366 ◽  
pp. 601-606 ◽  
Author(s):  
Choung Lii Chao ◽  
Chun Chieh Chen ◽  
Chia Jong Chang ◽  
Han Shan Dong ◽  
Kung Jeng Ma ◽  
...  

Stainless steel and other ferrous metals are normally classified as not diamond turnable for the unacceptable tool wear caused by the thermal-chemical reaction between diamond and ferrous metals. In the present research, stainless steel specimens were plasma nitrided at a relatively low temperature (<450oC) to prevent the depletion of Cr content at the austenite matrix and to give a hardened layer where Fe atoms are bonded to nitrogen atom to form γ’-Fe4N. Diamond turning experiments were subsequently carried out under the following machining conditions: single crystal diamond tool, cutting speed up to 180 m/min, cut depth up to 5μm and light mineral oil as the cutting fluid. The results showed that, given the same machining conditions, while rapid tool wear and poor surface finish were obtained when turning the as-received stainless steel, surfaces with Ra better than 3nm and no obvious tool wear were achieved when turning the plasma nitrided specimens

2013 ◽  
Vol 567 ◽  
pp. 33-38 ◽  
Author(s):  
Lai Zou ◽  
Ming Zhou

Ultrasonic vibration assisted turning has significant improvements in processing of intractable materials compared to conventional turning. This paper presents a theoretical investigation of tool wear in single point diamond turning of ferrous metals based on numerical simulation. Finite element modeling and simulation of ultrasonic vibration turning process were performed, aimed at optimizing a series of technological parameters in the process of machining, reducing tool wear and improving surface quality as much as possible. The results revealed that the cutting speed and depth of cut are two crucial factors for tool wear, unlike the other parameters of vibration frequency, amplitude and flank angle. Moreover, this technological measure has observably decreased the cutting force and cutting temperature, so as to obtain superior surface finish.


1991 ◽  
pp. 381-383
Author(s):  
Chris J. Evans ◽  
Ralph L. Lundin ◽  
Robert S. Polvani ◽  
Delbert D. Stewart

2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


2012 ◽  
Vol 497 ◽  
pp. 1-5
Author(s):  
Xiao Dan Xie ◽  
Yong Li ◽  
Cam Vinh Duong ◽  
Ahmed Al-Zahrani

Traditionally, single point diamond turning (SPDT) can not process ferreous metals because of acute tool wear. Ultrasonic vibration-assisted cutting(UVC) provides a promising solution for the problem. In this paper, for the aim of directly obtaining mirror surface on die steels, UVC method was used combining with SPDT process. Experiments were carried out on an ultra precision turning machine, cutting parameters and vibration parameters were well-chosen, and two kind of feed rates, two kinds of prevailing die steels were experimented. Mirror surfaces were successfully achieved on face turning, with the best roughness of Ra16.6nm. And the surface roughness, surface texture and tool wear in machining process were discussed.


2016 ◽  
Vol 840 ◽  
pp. 315-320 ◽  
Author(s):  
Afifah Mohd Ali ◽  
Norazharuddin Shah Abdullah ◽  
Manimaran Ratnam ◽  
Zainal Arifin Ahmad

The purpose of this research is to find the effects of cutting speed on the performance of the ZTA ceramic cutting tool. Three types of ZTA tools used in this study which are ZTA-MgO(micro), ZTA-MgO(nano) and ZTA-MgO-CeO2. Each of them were fabricated by wet mixing the materials, then dried at 100°C before crushed into powder. The powder was pressed into rhombic shape and sintered at 1600°C at 4 hours soaking time to yield dense body. To study the effect of the cutting speed on fabricated tool, machining was performed on the stainless steel 316L at 1500 to 2000 rpm cutting speed. Surface roughness of workpiece was measured and the tool wears were analysed by using optical microscope and Matlab programming where two types of wear measured i.e. nose wear and crater wear. Result shows that by increasing the cutting speed, the nose wear and crater wear increased due to high abrasion. However, surface roughness decreased due to temperature rise causing easier chip formation leaving a good quality surface although the tool wear is increased.


2002 ◽  
Vol 124 (4) ◽  
pp. 820-832 ◽  
Author(s):  
Jiancheng Liu ◽  
Kazuo Yamazaki ◽  
Hiroyuki Ueda ◽  
Norihiko Narutaki ◽  
Yasuo Yamane

In order to increase the accurate finishing productivity of pearlitic cast iron, face milling by CBN (Cubic Boron Nitride) cutting tools was studied. The main focus of the study is the machinability investigation of pearlitic cast iron with CBN cutting tools by studying the relationships among machining conditions such as feed rate, cutting speed as well as CBN cutting tool type, tool wear, workpiece surface quality, cutting forces, and cutting temperature. In addition, an emphasis is put on the effect of Al additive in pearlitic cast iron on its machinability and tool wear characteristics. High-speed milling experiments with CBN cutting tools were conducted on a vertical machining center under different machining conditions. The results obtained provide a useful understanding of milling performance by CBN cutting tools.


2017 ◽  
Vol 93 (5-8) ◽  
pp. 2841-2854 ◽  
Author(s):  
Rimvydas Gaidys ◽  
Olaf Dambon ◽  
Vytautas Ostasevicius ◽  
Clemens Dicke ◽  
Birute Narijauskaite

Author(s):  
Rusdi Nur ◽  
MY Noordin ◽  
S Izman ◽  
D Kurniawan

Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.


Sign in / Sign up

Export Citation Format

Share Document