Properties of SiC/Fe Composites Prepared by Coating Process and Powder Metallurgy Method

2008 ◽  
Vol 368-372 ◽  
pp. 852-854 ◽  
Author(s):  
Gang Shao ◽  
Hai Long Wang ◽  
Fang Shao ◽  
Kai Li ◽  
Rui Zhang

SiC particulate-reinforced Fe composites were prepared by a powder metallurgy (PM) and conventional atmospheric sintering method. X-ray diffraction (XRD), scanning electron microscopy (SEM) techniques were used to characterize the obtained composites. The coating layer of Cu on SiC particles can suppress the reaction between SiC and Fe until 1250oC. The maximum microhardness of 283 Hv appears at near 1250oC. Substantial reaction occurs at above 1250oC, which leads to the deterioration in the microstructure and related properties. The inter-metallic compounds of FeSi or Fe2Si were detected which contributed to the enhancement of the interface between SiC and Fe.

2011 ◽  
Vol 335-336 ◽  
pp. 699-703
Author(s):  
Hui Hui Tan ◽  
Zhu Xing Tang ◽  
Xia Zhao ◽  
He Zhang

This paper introduces Si2ON2-SiC ceramic fabricated by pressureless sintering method and studies the effect of additives, nitriding temperatures on bulk density, porosity, phase composition and microstructure. It is discovered that additives MgO, CeO2 can increase the densities of Si2ON2-SiC ceramic apparently, and MgO additive has a better effect than CeO2. Nitriding temperature also is an important factor. The bulk density of the specimen with MgO additive reaches maximum at 1.91 g/cm3 when sintered at 1450 °C, and the bulk density of specimen with CeO2 additive is 1.86 g/cm3 at the same condition while the bulk density of the specimen without additive is only 1.75 g/cSuperscript textm3. The X-ray diffraction and scanning electron microscopy of the specimens show that the amount of Si2ON2 increase with the sintering temperature increase. But when the temperature is higher than 1500 °C the Si2ON2 grains will decompose into Si3N4, and Si2ON2 will vanish at 1550 °C


Author(s):  
Yavuz Kaplan ◽  
Mehmet Gülsün ◽  
Sinan Aksöz

Abstract In this study, powder metallurgy was applied in a furnace atmosphere to form titanium boride layers on a commercially pure Ti surface. Experiments were carried out using the solid-state boriding method at 900 °C and 1000°C for 12 h and 24 h. Samples were produced by pressing the commercially pure Ti powders under 870 MPa. The sintering process required by the powder metallurgy method was carried out simultaneously with the boriding process. Thus, the sintering and boriding were performed in one stage. The formation of the boride layer was investigated by field emission scanning electron microscopy, optical-light microscopy, X-ray diffraction, and elemental dispersion spectrometry analyses. In addition, microhardness measurements were performed to examine the effect of the boriding process on hardness. The Vickers microhardness of the boronized surface reached 1773 HV, which was much higher than the 150 HV hardness of the commercially pure Ti substrate. The X-ray diffraction analysis showed that the boriding process had enabled the formation of TiB and TiB2 on the powder metallurgy Ti substrate surface. Consequently, the production of Ti via powder metallurgy is a potentially cost-effective alternative to the conventional method, and the boriding process supplies TiB and TiB2 that provide super-high hardness and excellent wear and corrosion resistance.


2014 ◽  
Vol 802 ◽  
pp. 457-461 ◽  
Author(s):  
José Hélio Duvaizem ◽  
N.M.F. Mendes ◽  
J.C.S. Casini ◽  
A.H. Bressiani ◽  
H. Takiishi

Ti-13Nb-13Zr alloy produced via powder metallurgy was submitted to heat treatment under various conditions and the effects on microstructure and elastic modulus were investigated. Heat treatment was performed using temperatures above and below α/β transus combined with different cooling rates – furnace cooling and water quenching. Microstructure and phases were analyzed employing scanning electron microscopy and X-ray diffraction. Elastic Modulus was determined using a dynamic mechanical analyzer (DMA). The results indicated that α phase precipitation and elastic modulus values increased after heat treatment performed using temperature below α/β transus. However, when it was performed above α/β transus and using higher cooling rate, a decrease in elastic modulus was observed despite higher α phase precipitation, indicating that the microstructural modifications observed via SEM, due to the presence of martensitic α phase, influenced on elastic modulus values.


2010 ◽  
Vol 160-162 ◽  
pp. 424-427
Author(s):  
Guang Lei Zhang ◽  
Guo Qiang Qin ◽  
Yuan Hua Zhang ◽  
Pu Cheng ◽  
Chang Tao Shao

Feldspar-alumina dental ceramics were produced by impressed sintering method and characterized by X-ray diffraction and scanning electron microscope techniques. The machinability of the obtained alumina ceramics was evaluated by grinding capacity in the simulative grinding experiment. The results show that an appropriate amount of feldspar additive can reduce the sinter temperature and improve density, bending strength and machinability of alumina dental ceramics. Under 10 wt% feldspar and 1450 °C sinter temperature, the relative density and bending strength of ceramic reached 93.62% and 235MPa, respectively.


2020 ◽  
Vol 26 (6) ◽  
pp. 132-139
Author(s):  
Sahib Mohammed Mahdi ◽  
Nadia Ghadhanfer Hikmat ◽  
Dalmn Yaseen Taha

The effect of different Ti additions on the microstructure of Al-Ti alloy prepared by powder metallurgy was investigated. A certain amount of Ti (10wt%, 15wt%, and 20wt%) were added to aluminium and the tests like microhardness, density, scanning electron microscope (SEM), optical microscope (OM) and X-Ray Diffraction (XRD) were conducted to determine the influence of different Ti additives on the Al-Ti alloy properties and microstructure. The results show that the grains of α-Al changed from large grains to roughly spherical and then to small rounded grains with increasing Ti content, the micro-hardness of the alloy increases with increasing Ti, and XRD results confirm the formation of TiAl3 intermetallic compound during sintering.


Author(s):  
D. A. Angel ◽  
T. Mikó ◽  
F. Kristály ◽  
M. Benke ◽  
Z. Gácsi

AbstractTitanium monoboride (TiB) whisker-reinforced titanium (Ti) matrix composites were produced by powder metallurgy, through vacuum sintering. TiB is formed by thermal decomposition of TiB2 precursor. In addition, a new hybrid composite was developed by admixing nanograined and nanocrystalline (more important) Ti to enhance the transformation mechanism of TiB2 to TiB phase. The morphology and particle size of the initial powders, mixtures and the microstructure of the composites have been studied by scanning electron microscopy (SEM). The phase analysis and transformation monitoring were performed by X-ray diffraction (XRD). The sintered composites were also subjected to compressive strength and hardness measurements. According to XRD results, through the addition of nanocrystalline Ti, a probable enhancement of the TiB2 → TiB transformation occurred producing more TiB whiskers in the hybrid composites. All samples of the hybrid composites exhibited improved yield strength (1365 MPa) and hardness (358 HV) compared to the non-hybrid ones 927 MPa and 254 HV, respectively. Graphical abstract


2008 ◽  
Vol 587-588 ◽  
pp. 795-799 ◽  
Author(s):  
A. Di Paola ◽  
M. Addamo ◽  
M. Bellardita ◽  
E. García-López ◽  
G. Marcì ◽  
...  

Photoactive films consisting of pure anatase, brookite or rutile were deposited on glass slides by a dip coating process from water dispersions or solutions obtained by using TiCl4 as the precursor. The films were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The photocatalytic activity of the various samples was evaluated by using the photooxidation of 2-propanol in gas solid regime as probe reaction. Brookite and anatase films showed a good photoactivity degrading the substrate and the propanone produced during the reaction.


2014 ◽  
Vol 70 (5) ◽  
pp. 757-762 ◽  
Author(s):  
Lin Du ◽  
Jin Wu ◽  
Guiying Li ◽  
Changwei Hu

RuO2-PdO/Ti electrode was prepared and used for the electro-catalytic degradation of Active Red K-2BP. It was found that the electrode was very stable in the process. A discoloration rate of 96.2% could still be achieved on the electrode after being used for 100 runs. X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy characterizations of the electrode were carried out. Results showed that the deactivation of the electrode was caused by the reconstruction and oxidation of titanium substrate as well as by the coverage of the active phases on the surface of the electrode by silicon. The cracks on the coating layer also contributed to the deactivation.


2012 ◽  
Vol 457-458 ◽  
pp. 611-615
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Rong Gao

This study dealt with the formation mechanism and microstructure of titanium carbide particulate reinforced Fe-based composite. The microstructure of the composite was characterized by scanning electron microscopy (SEM), the microstructural study reveled that the TiC particles were distributed uniformly in the iron matrix, and TiC particles had various morphology. The formation mechanism of titanium carbide was also investigated by differential thermal analysis (DTA) and X-ray diffraction(XRD). The experimental results indicated that titanium carbide formed at 1138.2°C.


2005 ◽  
Vol 494 ◽  
pp. 211-216 ◽  
Author(s):  
B. Dimčić ◽  
M. Vilotijević ◽  
D. Božić ◽  
D. Rajnović ◽  
M.T. Jovanović

The structural and compression mechanical properties of Ti3Al-based intermetallics produced by powder metallurgy techniques have been studied. The as-milled powders were compacted by hot pressing to non-porous homogenous compacts. Prior to compression tests, all compacts were homogenized by a solution treatment at 1050°C (a+β region) for 1h, followed by water quenching. The compression tests were performed from room temperature to 500°C in vacuum at a strain rate of 1 3 10 4 . 2 − − × s . Detailed microstructural characterization was evaluated by scanning electron microscopy (SEM), followed by energy dispersive spectroscopy (EDS) and X-ray diffraction analysis.


Sign in / Sign up

Export Citation Format

Share Document