AFM with the Slope Compensation Technique for High-Speed Precision Measurement of Micro-Structured Surfaces

2008 ◽  
Vol 381-382 ◽  
pp. 35-38
Author(s):  
Yu Guo Cui ◽  
Bing Feng Ju ◽  
J. Aoki ◽  
Yoshikazu Arai ◽  
Wei Gao

In this paper, we applied the contact constant-height mode together with the pre-compensation technique which can realize the capability of high speed as well as faithful topographical image. Before scanning, the slope variation of the micro-structured surface was measured by the capacitance sensor and then stored in a PC. During the surface profile scanning, a piezoelectric actuator is applied which can provide the inconsecutive motion that corresponds to the pre-measured slope variation. As a result, the precision measurement can also be achieved. The validity of the proposed method and its performance are verified by compare the topographical images that were gained by the contact constant-force mode with feedback control. However, the scanning speed of our method is obviously high.

2021 ◽  
pp. 002029402110022
Author(s):  
Xiaohua Zhou ◽  
Jianbin Zheng ◽  
Xiaoming Wang ◽  
Wenda Niu ◽  
Tongjian Guo

High-speed scanning is a huge challenge to the motion control of step-scanning gene sequencing stage. The stage should achieve high-precision position stability with minimal settling time for each step. The existing step-scanning scheme usually bases on fixed-step motion control, which has limited means to reduce the time cost of approaching the desired position and keeping high-precision position stability. In this work, we focus on shortening the settling time of stepping motion and propose a novel variable step control method to increase the scanning speed of gene sequencing stage. Specifically, the variable step control stabilizes the stage at any position in a steady-state interval rather than the desired position on each step, so that reduces the settling time. The resulting step-length error is compensated in the next acceleration and deceleration process of stepping to avoid the accumulation of errors. We explicitly described the working process of the step-scanning gene sequencer and designed the PID control structure used in the variable step control for the gene sequencing stage. The simulation was performed to check the performance and stability of the variable step control. Under the conditions of the variable step control where the IMA6000 gene sequencer prototype was evaluated extensively. The experimental results show that the real gene sequencer can step 1.54 mm in 50 ms period, and maintain a high-precision stable state less than 30 nm standard deviation in the following 10 ms period. The proposed method performs well on the gene sequencing stage.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 362
Author(s):  
Luke Oduor Otieno ◽  
Bernard Ouma Alunda ◽  
Jaehyun Kim ◽  
Yong Joong Lee

A high-speed atomic force microscope (HS-AFM) requires a specialized set of hardware and software and therefore improving video-rate HS-AFMs for general applications is an ongoing process. To improve the imaging rate of an AFM, all components have to be carefully redesigned since the slowest component determines the overall bandwidth of the instrument. In this work, we present a design of a compact HS-AFM scan-head featuring minimal loading on the Z-scanner. Using a custom-programmed controller and a high-speed lateral scanner, we demonstrate its working by obtaining topographic images of Blu-ray disk data tracks in contact- and tapping-modes. Images acquired using a contact-mode cantilever with a natural frequency of 60 kHz in constant deflection mode show good tracking of topography at 400 Hz. In constant height mode, tracking of topography is demonstrated at rates up to 1.9 kHz for the scan size of 1μm×1μm with 100×100 pixels.


2013 ◽  
Vol 668 ◽  
pp. 283-287
Author(s):  
Sheng Feng Zhou ◽  
Xiao Qin Dai

In order to characterize the dissolution of cast WC particles in Ni-based WC coatings by laser induction hybrid rapid cladding, NiCrBSi+50 wt.% WC coatings are produced on A3 steel by low and high speed laser induction hybrid cladding (LIHC). When laser scanning speed is only 600 mm/min, the crack-free coating has pores and its dilution is as high as 45%. At the bottom of coating, the cast WC particles are dissolved completely and the herringbone M6C eutectics are precipitated. In the center of coating, the cast WC particles are also dissolved completely and the acicular, blocky and dendritic carbides with relatively low hardness are precipitated. At two sides of coating, some cast WC particles are dissolved partially and interact with Ni-based alloy to form an alloyed reaction layer, while others preserve the primary eutectic structure and high hardness. When laser scanning speed and powder feeding rate are increased to 1500 mm/min and 85.6 g/min, the coating has cracks but no pores. Its dilution can be markedly decreased to 7.8%. Moreover, a majority of WC particles are still composed of primary eutectic structure and keep their high hardness, which can play a positive role in strengthening Ni-based metallic matrix.


2018 ◽  
Vol 8 (11) ◽  
pp. 2111 ◽  
Author(s):  
Jieyu Xian ◽  
Xingsheng Wang ◽  
Xiuqing Fu ◽  
Zhengwei Zhang ◽  
Lu Liu ◽  
...  

A simple mathematical model was developed to predict the machined depth and surface profile in laser surface texturing of micro-channels using a picosecond laser. Fabrication of micro-craters with pulse trains of different numbers was initially performed. Two baseline values from the created micro-craters were used to calculate the estimated simulation parameters. Thereafter, the depths and profiles with various scanning speeds or adjacent intervals were simulated using the developed model and calculated parameters. Corresponding experiments were conducted to validate the developed mathematical model. An excellent agreement was obtained for the predicted and experimental depths and surface profiles. The machined depth decreased with the increase of scanning speed or adjacent interval.


2005 ◽  
Vol 295-296 ◽  
pp. 477-482
Author(s):  
K.W. Wang ◽  
Z.J. Cai ◽  
Li Jiang Zeng

A two-dimensional surface profile imaging technique based on heterodyne interferometer is proposed. A piezo translator vibrated grating is used to generate a heterodyne signal. A high speed CCD camera is used to extract the interference signal using a five step method. The uncertainty in the displacement measurement is approximately 0.035 µm within a measurement range of 1.7 µm, confirming the two dimensional heterodyne interferometer is valid for measuring the surface profile. The method is also available for low coherence heterodyne interferometer due to the optical frequency shifts caused by the vibration of grating independent on the wavelength.


With the advent of modern wireless communication technology and increasing requirement of high speed network, network life-time is becoming a major area of concern. The need of network power management is gaining attention with the high data network in place and is making a paradigm shift towards green communication. Hence embedding the RF energy harvesting (EH) capability in a wireless network is becoming inevitable. To make RF EH a reality a high frequency rectifier is indeed indispensable along with other circuits in the system. The RF energy needs to be harvested from the available sources in the ambience. It is also seen that the current generation of RF sources radiates at a very low signal power. So, to successfully convert and store this energy, the rectifier must not only be able to provide a sufficiently higher percentage conversion ratio (PCE) but also be able to cater it at a lower range of signal power. This paper presents the design and analysis of a simplified 3-transistor high frequency rectifier. A threshold voltage compensation technique is also incorporated and it achieves a PCE upto 85% at -2dBm in its single stage implementation. This is observed to be one of the highest in-class efficiency as compared to recently reported designs. From the frequency response it is seen to exhibit wide band performance spanning almost all popular wireless bands. The dynamic power dissipation (DPD) is calculated to be 6.25pW at -2dB, whereas the leakage power (LP) is observed to be zero.


Author(s):  
Allan M. Zarembski ◽  
James Blaze ◽  
Pradeep Patel

What are some of the practical obstacles to a “shared interests” between a freight railway business and the proposed new higher speed passenger entity? This paper discusses the real “tension” between the two business interests that fund freight trains versus those that support and fund higher speed passenger trains as they attempt to share the same tracks in a safe manner. There are fundamental laws of physics that have to be addressed as the two different sets of equipment are “accommodated” on a shared corridor. This may not always be an easy accommodation between the two commercial parties. One real tension between the two commercial interests involves the physical problem of accommodating two radically different train sets on areas of curved track. For one example, what will be the passenger train required future higher speeds and how will these speeds be accommodated in existing main line tracks with curves varying from 1% to 6% in degrees? How much super elevation will need to be put back into the heretofore freight train tracks? How will the resulting super elevation affect the operation of so called drag or high tonnage slow speed bulk cargo trains? Accommodating such differences in train set types, axle loadings, freight versus passenger train set speeds, requires making detailed choices at the engineering level. These may be shared interests, but they are also variables with far different outcomes by design for the two different business types. The freight railways have spent the last few decades “taking the super elevation out” because it is not needed for the modern and highly efficient freight trains. Now the requirements of the passenger trains may need for it to be replaced. What are the dynamics and fundamental engineering principles at work here? Grade crossings have a safety issue set of interests that likely require such things as “quad” gates and for the highest passenger train speeds even complete grade separation. Track accommodating very high speed passenger trains requires under federal regulations much closer physical property tolerances in gauge width, track alignment, and surface profile. This in turn increases the level of track inspection and track maintenance expenses versus the standard freight operations in a corridor. Fundamentally, how is this all going to be allocated to the two different commercial train users? What will be the equally shared cost and what are examples of the solely allocated costs when a corridor has such different train users? In summary, this paper provides a description of these shared issues and the fundamental trade-offs that the parties must agree upon related to overall track design, track geometry, track curvature, super elevation options, allowed speeds in curves, more robust protection at grade crossings, and the manner in which these changes from the freight only corridors are to be allocated given the resulting much higher track maintenance costs of these to be shared assets.


Sign in / Sign up

Export Citation Format

Share Document