Fundamental Experiment of Laminated Templates Electro-Deposition in Manufacturing Metal Part

2008 ◽  
Vol 392-394 ◽  
pp. 189-194 ◽  
Author(s):  
Hui Fan ◽  
Zong Jun Tian ◽  
Y.H. Huang ◽  
Z.D. Liu ◽  
X.C. Wang

Laminated templates electro-deposition is an original manufacturing technology that is aimed at micro-scale metallic structures fabrication. Based on the discrete piling-up principal and electrodepositing method, it realizes a manufacturing simplification from the traditional machining to the repetition of template-assisted planar deposition in forming a three-dimensional complicated object. The ability to control the deposit surface nouniformity is a key to successful implementation for each planar depositing. Profile geometry and current configuration are alternated in experiment and thought as the major factors influencing deposit surface roughening. The results show that the surface of the deposits obtained by pulse electroforming has better performance in deposit thickness distribution and properties of the deposits. Optimized parameters have been obtained from the preliminary experiments in which 0.3millimeters-thick epoxy templates and 4~6A/dm2 current density were used at 40+ and a bulk of copper parts, section size 30mm×30mm and 7mm thick were produced and tested for their mechanical performance.

2012 ◽  
Vol 522 ◽  
pp. 52-57
Author(s):  
Hui Fan ◽  
Yin Hui Huang

Laminated templates electro-deposition (LTE) is a new manufacturing technique aimed at a highly precise and low-cost fabrication of metallic structures through a number of planar template-patterned depositing. The ability to control deposit surface non-uniformity in each planar depositing has been proved a key to this technique. Correspondingly a 3D simulation for electrical field has been modeled using finite-element method in line with the real experimental conditions. The mapped contour of simulating proved the variedly distributed electrical field and basically match with experimental results. Three groups of LTE test by direct current, pulse and double-pulse current are introduced and assessed in term of their effect to improve uniformity. By comparison, pulse application, especially double-pulse offered a better deposit quality with optimized parameters including pulse width, frequency, working time and off time. A bulk of 10-15layers copper parts, section size 20mm×20mm and 4-6mm thick were produced using the modified parameters.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1271
Author(s):  
Andreas Koenig ◽  
Leonie Schmohl ◽  
Johannes Scheffler ◽  
Florian Fuchs ◽  
Michaela Schulz-Siegmund ◽  
...  

The aim of the study was to investigate the effect of X-rays used in micro X-ray computer tomography (µXCT) on the mechanical performance and microstructure of a variety of dental materials. Standardised bending beams (2 × 2 × 25 mm3) were forwarded to irradiation with an industrial tomograph. Using three-dimensional datasets, the porosity of the materials was quantified and flexural strength was investigated prior to and after irradiation. The thermal properties of irradiated and unirradiated materials were analysed and compared by means of differential scanning calorimetry (DSC). Single µXCT measurements led to a significant decrease in flexural strength of polycarbonate with acrylnitril-butadien-styrol (PC-ABS). No significant influence in flexural strength was identified for resin-based composites (RBCs), poly(methyl methacrylate) (PMMA), and zinc phosphate cement (HAR) after a single irradiation by measurement. However, DSC results suggest that changes in the microstructure of PMMA are possible with increasing radiation doses (multiple measurements, longer measurements, higher output power from the X-ray tube). In summary, it must be assumed that X-ray radiation during µXCT measurement at high doses can lead to changes in the structure and properties of certain polymers.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 346-354
Author(s):  
Guoquan Qi ◽  
Hongxia Yan ◽  
Dongtao Qi ◽  
Houbu Li ◽  
Lushi Kong ◽  
...  

Abstract The chapter deals with the performance evaluation of the polyethylene of raised temperature resistance (PE-RT) and polyethylene (PE) using autoclave test under sour oil and gas medium conditions. The analyses of performance changes showed that PE-RT has good media resistance at 60°C. As the temperature increases, its mechanical properties decrease, accompanied by an increase in weight. Comparative analyses showed that no matter what temperature conditions are, PE-RT media resistance is better than PE80. The better media resistance of PE-RT depends on its higher degree of branching. Short branches are distributed between the crystals to form a connection between the crystals, thereby improving its heat resistance and stress under high-temperature conditions. PE-RT forms an excellent three-dimensional network structure through copolymerization, ensuring that it has better media resistance than PE80. However, the mechanical performance will be attenuated due to the high service temperature.


2021 ◽  
Vol 9 (1) ◽  
pp. 76
Author(s):  
Duoc Nguyen ◽  
Niels Jacobsen ◽  
Dano Roelvink

This study aims at developing a new set of equations of mean motion in the presence of surface waves, which is practically applicable from deep water to the coastal zone, estuaries, and outflow areas. The generalized Lagrangian mean (GLM) method is employed to derive a set of quasi-Eulerian mean three-dimensional equations of motion, where effects of the waves are included through source terms. The obtained equations are expressed to the second-order of wave amplitude. Whereas the classical Eulerian-mean equations of motion are only applicable below the wave trough, the new equations are valid until the mean water surface even in the presence of finite-amplitude surface waves. A two-dimensional numerical model (2DV model) is developed to validate the new set of equations of motion. The 2DV model passes the test of steady monochromatic waves propagating over a slope without dissipation (adiabatic condition). This is a primary test for equations of mean motion with a known analytical solution. In addition to this, experimental data for the interaction between random waves and a mean current in both non-breaking and breaking waves are employed to validate the 2DV model. As shown by this successful implementation and validation, the implementation of these equations in any 3D model code is straightforward and may be expected to provide consistent results from deep water to the surf zone, under both weak and strong ambient currents.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 391-397
Author(s):  
Tao Liu ◽  
Ripeng Zhang ◽  
Jianzhi Liu ◽  
Ling Zhao ◽  
Yueqin Yu

Abstract Highly stretched and conductive hydrogels, especially synthetized from natural polymers, are beneficial for highly stretched electronic equipment which is applied in extreme environment. We designed and prepared robust and tough alginate hydrogels (GMA-SA-PAM) using the ingenious strategy of fully interpenetrating cross-linking, in which the glycidyl methacrylate (GMA) was used to modify sodium alginate (SA) and then copolymerized with acrylamide (AM) and methylenebisacrylamide (BIS) as cross-linkers. The complete cross-linked structures can averagely dissipate energy and the polymer structures can maintain hydrogels that are three-dimensional to greatly improve the mechanical performance of hydrogels. The GMA-SA-PAM hydrogels display ultra-stretchable (strain up to ∼407% of tensile strain) and highly compressible (∼57% of compression strain) properties. In addition, soaking the GMA-SA-PAM hydrogel in 5 wt% NaCl solution also endows the conductivity of the hydrogel (this hydrogel was named as GSP-Na) with excellent conductive properties (5.26 S m−1). The GSP-Na hydrogel with high stability, durability, as well as wide range extent sensor is also demonstrated by researching the electrochemical signals and showing the potential for applications in wearable and quickly responded electronics.


2018 ◽  
Vol 8 (12) ◽  
pp. 2461 ◽  
Author(s):  
Qian Wang ◽  
Gang Fang ◽  
Ying-Hong Zhao ◽  
Jie Zhou

Optimized stent pattern design can effectively enhance the mechanical performance of magnesium alloy stents by adjusting strain distribution and evolution during stent deformation, thereby overcoming the limitations imposed by the intrinsic mechanical properties of magnesium alloys. In the present study, a new stent design pattern for magnesium alloys was proposed and compared to two existing stent design patterns. Measures of the mechanical performance of these three stents, including crimping and expanding deformability, radial scaffolding capacity, radial recoil and bending flexibility, were determined. Three-dimensional finite element (FE) models were built to predict the mechanical performance of the stents with the three design patterns and to assist in understanding the experimental results. The results showed that, overall, the stent with the new design pattern was superior to the stents based on the existing designs, though the expanding capacity of the newly designed stent still needed to be improved.


2019 ◽  
Vol 25 (9) ◽  
pp. 1482-1492
Author(s):  
Tong Wu ◽  
Andres Tovar

Purpose This paper aims to establish a multiscale topology optimization method for the optimal design of non-periodic, self-supporting cellular structures subjected to thermo-mechanical loads. The result is a hierarchically complex design that is thermally efficient, mechanically stable and suitable for additive manufacturing (AM). Design/methodology/approach The proposed method seeks to maximize thermo-mechanical performance at the macroscale in a conceptual design while obtaining maximum shear modulus for each unit cell at the mesoscale. Then, the macroscale performance is re-estimated, and the mesoscale design is updated until the macroscale performance is satisfied. Findings A two-dimensional Messerschmitt Bolkow Bolhm (MBB) beam withstanding thermo-mechanical load is presented to illustrate the proposed design method. Furthermore, the method is implemented to optimize a three-dimensional injection mold, which is successfully prototyped using 420 stainless steel infiltrated with bronze. Originality/value By developing a computationally efficient and manufacturing friendly inverse homogenization approach, the novel multiscale design could generate porous molds which can save up to 30 per cent material compared to their solid counterpart without decreasing thermo-mechanical performance. Practical implications This study is a useful tool for the designer in molding industries to reduce the cost of the injection mold and take full advantage of AM.


2012 ◽  
Vol 11 (5) ◽  
pp. 1525-1546 ◽  
Author(s):  
Philip Barton ◽  
Evgeniy Romenski

AbstractIn this paper we show that entropy can be used within a functional for the stress relaxation time of solid materials to parametrise finite viscoplastic strain-hardening deformations. Through doing so the classical empirical recovery of a suitable irreversible scalar measure of work-hardening from the three-dimensional state parameters is avoided. The success of the proposed approach centres on determination of a rate-independent relation between plastic strain and entropy, which is found to be suitably simplistic such to not add any significant complexity to the final model. The result is sufficiently general to be used in combination with existing constitutive models for inelastic deformations parametrised by one-dimensional plastic strain provided the constitutive models are thermodynamically consistent. Here a model for the tangential stress relaxation time based upon established dislocation mechanics theory is calibrated for OFHC copper and subsequently integrated within a two-dimensional moving-mesh scheme. We address some of the numerical challenges that are faced in order to ensure successful implementation of the proposedmodel within a hydrocode. The approach is demonstrated through simulations of flyer-plate and cylinder impacts.


2020 ◽  
Vol 5 (3) ◽  
pp. 320-326
Author(s):  
Ionut Nica

The explosive development of the human society in contrast to the limited character of resources determines the need for successful implementation of mathematic models in the decision-making process concerning the use of available resources. The oil industry includes a series of global processes such as mining, extraction, refining, transport (road, rail, ship and pipeline) and oil products. The products of this industry with the highest degree of utilization are gasoline and diesel but the portfolio is much broader, kerosene, bitumen, fuel and raw materials for other chemicals such as solvents, pesticides, fertilizers and materials plastic. The oil industry comprises three major areas: "upstream" extraction; refining - "midstream" and transportation and marketing of downstream products. In most cases refining is considered to be part of downstream, Oil and petroleum products are essential for many industries and their importance is vital in maintaining and developing the industrial area in the current configuration.


Sign in / Sign up

Export Citation Format

Share Document