The Influence of Annealing Treatment on Physics and Electrical Characteristics of Ba(Zr0.1Ti0.9)O3 Ferroelectric Films on ITO/Glass Substrate

2010 ◽  
Vol 434-435 ◽  
pp. 289-292
Author(s):  
Wen Cheng Tzou ◽  
Chien Min Cheng ◽  
Kai Huang Chen ◽  
Hung Chi Yang ◽  
Guan Hung Shen ◽  
...  

Perovskite Ba(Zr0.1Ti0.9)O3 (BZ1T9) ferroelectric thin films well deposited on ITO/glass substrates for applications in system-on-panel (SOP) devices are produced and investigated. The sputtering parameters of as-deposited BZ1T9 thin films were rf power of 160 W, chamber pressure of 10 mTorr, substrate temperature of 550oC, and an oxygen concentration of 40%. From the SEM cross- sectional observation, the deposition rate were about 2.5 nm/min. Additionally, the maximum dielectric constant and leakage current density of annealed BZT films under the rapid temperature annealing would be increased, as the temperature increased to 6500C. Further, the maximum remnant polarization and coercive field of BZT films were found and calculated from the p-E curves.

2012 ◽  
Vol 512-515 ◽  
pp. 1321-1324
Author(s):  
Shih Fang Chen ◽  
Kai Huang Chen ◽  
Chien Min Cheng

In this study, the effects of La and V doping on Bi4Ti3O12(BLTV) ferroelectric thin films deposited on ITO/glass substrates using rf magnetron sputtering were produced and investigated. The effect of oxygen concentration and RF power on the physical and electrical characteristics of BLTV thin films was determined. The physical characteristics of BLTV thin films were obtained by the XRD pattern, SEM and AFM. The variations of crystallization, surface roughness and thickness of BLTV thin films were discussed. The electrical properties of BLTV thin films deposited under various parameters were measured by the HP4156C.


2011 ◽  
Vol 415-417 ◽  
pp. 1867-1870 ◽  
Author(s):  
Chao Chin Chan ◽  
Yuan Tai Hsieh ◽  
Cheng Yi Chen ◽  
Wen Cheng Tzou ◽  
Chia Ching Wu ◽  
...  

Sr0.6Ba0.4Nb2O6 (SBN) thin films were prepared by radio frequency (RF) sputtering onto the SiO2/Si/Al and Pt/Ti/Si substrates to form the MFIS and MFM structures. Their deposition rates increased with decreasing oxygen concentration and with increasing RF power. Their optimal deposition parameters were the substrate temperature of 500°C, chamber pressure of 10 mTorr, oxygen concentration of 40%, and RF power of 120W, respectively. The rapid temperature annealing (RTA) process had large effects on the grain growth of the SBN thin films. The effects of different RTA temperatures on the leakage current density - electrical field curves and the capacitance - voltage curves of the SBN thin films were also investigated.


2011 ◽  
Vol 687 ◽  
pp. 70-74
Author(s):  
Cheng Hsing Hsu ◽  
His Wen Yang ◽  
Jenn Sen Lin

Electrical and optical properties of 1wt% ZnO-doped (Zr0.8Sn0.2)TiO4thin films prepared by rf magnetron sputtering on ITO/Glass substrates at different rf power and substrate temperature were investigated. The surface structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were found to be sensitive to the deposition conditions, such as rf power and substrate temperature. The selected-area diffraction pattern showed that the deposited films exhibited a polycrystalline microstructure. All films exhibited ZST (111) orientation perpendicular to the substrate surface and the grain size as well as the deposition rate of the film increased with the increase in both the rf power and the substrate temperature. Optical transmittance spectroscopy further revealed high transparency (over 60%) in the visible region of the spectrum.


1981 ◽  
Vol 4 ◽  
Author(s):  
G. Auvert ◽  
D. Bensahel ◽  
A. Perio ◽  
F. Morin ◽  
G.A. Rozgonyi ◽  
...  

ABSTRACTExplosive Crystallization occurs in cw laser annealing on a-Si films deposited on glass substrates at laser scan speeds higher than 30 cm/sec. Optical, structural and electrical properties of the crystallized films at various laser scan speeds confirm the existence of two kinds of explosive growth depending on the state of crystallinity of the starting material.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Ousama Ifguis

Thin films of epoxy/silicone loaded with N-CNT were prepared by a method of sol-gel and deposited on ITO glass substrates at room temperature. The properties of the loaded monolayer samples (0.00, 0.07, 0.1, and 0.2 wt% N-CNTs) were analyzed by UV-visible spectroscopy. The transmittance for the unloaded thin films is 88%, and an average transmittance for the loaded thin film is about 42 to 67% in the visible range. The optical properties were studied from UV-visible spectroscopy to examine the transmission spectrum, optical gap, Tauc verified optical gap, and Urbach energy, based on the envelope method proposed by Swanepoel (1983). The results indicate that the adjusted optical gap of the film has a direct optical transition with an optical gap of 3.61 eV for unloaded thin films and 3.55 to 3.19 eV for loaded thin films depending on the loading rate. The optical gap is appropriately adapted to the direct transition model proposed by Tauc et al. (1966); its value was 3.6 eV for unloaded thin films and from 3.38 to 3.1 eV for loaded thin films; then, we determined the Urbach energy which is inversely variable with the optical gap, where Urbach’s energy is 0.19 eV for the unloaded thin films and varies from 0.43 to 1.33 eV for the loaded thin films with increasing rate of N-CNTs. Finally, nanocomposite epoxy/silicone N-CNT films can be developed as electrically conductive materials with specific optical characteristics, giving the possibility to be used in electrooptical applications.


2021 ◽  
Author(s):  
Younes Ziat ◽  
Hamza Belkhanchi ◽  
Maryama Hammi ◽  
Charaf Laghlimi ◽  
A Moutcine

Abstract Recently, the rise of two dimensional amorphous nanostructured thin films have ignited a big interest because of their intriguingly isotropic structural and physical properties leading to potential applications in the nano-optoelectronics. However, according to literature, most of optoelectronic properties are investigated on chalcogenides related heterostructures. This has motivated the present work aiming to provide a new platform for the fabrication, examination of the properties and the applications of 2D nanostructured thin films based on epoxy/silicone blend. Thin films of Epoxy/Silicone loaded with nitrogen doped carbon nanotubes (N-CNTs) were prepared by sol-gel method and deposited on Indium Tin Oxide (ITO) glass substrates at room temperature. Further examination of optical properties aimed the investigation of optical pseudo-gap and Urbach energy and enabled the determination of processed films thickness based on Manifacier and Swanepol method. The results indicated that the unloaded thin films have a direct optical transition with a value of 3.61 eV followed by noticeable shift towards narrowing gaps depending on the loading rate. Urbach's energy is 0.19 eV for the unloaded thin films, and varies from 0.43 to 1.33 eV for the loaded thin films with increasing the rate of N-CNTs. It is inversely variable with the optical pseudo-gap. Finally, Epoxy/Silicone loaded with N-CNTs nanocomposites films can be developed as active layers with specific optical characteristics, giving the possibility to be used in electro-optical applications.


2007 ◽  
Vol 1035 ◽  
Author(s):  
Shahrukh Khan ◽  
Abbas jamshidi-Roudbari ◽  
Miltiadis Hatalis

AbstractThis work emphasizes room temperature deposition and fabrication of top-gated staggered structure ZnO-TFTs and integration of ZnO-TFT based simple logic circuits. We synthesized ZnO thin films by RF sputtering in an Ar/Oxygen ambience with no intentional heating of the substrates. The electrical, optical and structural properties of the ZnO thin films can be well-controlled by altering process parameters such as RF power density and relative Oxygen partial pressure. Typical deposition was carried out at a chamber pressure of 15 mTorr, Ar/Oxygen flow rates of 15 sccm/1 sccm and RF power density of 3W/cm2. The resistivity of the as-deposited films was between 104-106 Ù-cm with high optical transparency (>80%) in the visible spectrum and minimal surface roughness as detected by high-resolution AFM imaging. Gated van der Pauw and Kelvin-bridge structures were lithographically patterned to asses ZnO channel resistance. In the completed devices, a dual-stack (Ta2O5/SiO2) dielectric layer was effective in suppressing gate-leakage current below 10 pA and enabled depletion-mode ZnO-TFT operation exhibiting hard saturation. A Ti/Au metallization scheme was adopted to provide good ohmic contact to ZnO. TFTs retained well-behaved transfer characteristics down to a channel length of 4 ìm with on/off drain current ratio exceeding 105, threshold voltage between -15 V to -5 V and inverse sub-threshold slope of around 1.75 V/decade.


Sign in / Sign up

Export Citation Format

Share Document