Effects of Stitching Parameters of Non-Crimp Fabrics on the Mechanical Properties of CFRTP

2010 ◽  
Vol 452-453 ◽  
pp. 301-304
Author(s):  
Kazuto Tanaka ◽  
Masahiro Yamada ◽  
Masahiro Shinohara ◽  
Tsutao Katayama

The non-crimp fabric (NCF) have an advantageous combination of high material properties and low cost for processing, and overcomes the disadvantages of the crimp factor of woven fabrics, providing full use of modulus and strength of reinforcing fibre. For using NCF, different stitching tension and thread of non-crimp fabrics may cause the mechanical properties of CFRTP. In this study, it is aimed to clarify the effect of stitching tension and thread of non-crimp fabrics on tensile strength of CFRTP. The disorder degree of the thickness direction in the fibre bundle and the ratio of resin rich area were examined by the SEM image analysis. There is the inverse correlation between tensile strength and the disorder degree to the thickness direction in the fibre bundle.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1543
Author(s):  
Francisca Guadalupe Cabrera-Covarrubias ◽  
José Manuel Gómez-Soberón ◽  
Carlos Antonio Rosas-Casarez ◽  
Jorge Luis Almaral-Sánchez ◽  
Jesús Manuel Bernal-Camacho

The porosity of mortars with recycled ceramic aggregates (10, 20, 30, 50, and 100% as a replacement of natural aggregate) was evaluated and analyzed using three different techniques. The results of gas adsorption (N2), Scanning Electron Microscopy (SEM) image analysis and open porosity allowed establishing the relationship between the recycled aggregate content and the porosity of these mortars, as well as the relationship between porosity and the physical and mechanical properties of the mortars: absorption, density, compressive strength, modulus of elasticity, and drying shrinkage. Using the R2 coefficient and the equation typology as criteria, additional data such as Brunauer, Emmett, and Teller (BET) surface area (N2 adsorption) established significant correlations with the mentioned properties; with SEM image analysis, no explanatory relationships could be established; and with open porosity, revealing relationships were established (R2 > 0.9). With the three techniques, it was confirmed that the increase in porosity is related to the increase in the amount of ceramic aggregate; in particular with gas adsorption (N2) and open porosity. It was concluded that the open porosity technique can explain the behavior of these recycled mortars with more reliable data, in a simple and direct way, linked to its establishment with a more representative sample of the mortar matrix.


2021 ◽  
Author(s):  
Budi Arifvianto ◽  
Teguh Nur Iman ◽  
Benidiktus Tulung Prayoga ◽  
Rini Dharmastiti ◽  
Urip Agus Salim ◽  
...  

Abstract Fused filament fabrication (FFF) has become one of the most popular, practical, and low-cost additive manufacturing techniques for fabricating geometrically-complex thermoplastic polyurethane (TPU) elastomer. However, there are still some uncertainties concerning the relationship between several operating parameters applied in this technique and the mechanical properties of the processed material. In this research, the influences of extruder temperature and raster orientation on the mechanical properties of the FFF-processed TPU elastomer were studied. A series of uniaxial tensile tests was carried out to determine tensile strength, strain, and elastic modulus of TPU elastomer that had been printed with various extruder temperatures, i.e., 190–230 °C, and raster angles, i.e., 0–90°. Thermal and chemical characterizations were also conducted to support the analysis in this research. The results obviously showed the ductile and elastic characteristics of the FFF-processed TPU, with specific tensile strength and strain that could reach up to 39 MPa and 600%, respectively. The failure mechanisms operating on the FFF-processed TPU and the result of stress analysis by using the developed Mohr’s circle are also discussed in this paper. In conclusion, the extrusion temperature of 200 °C and raster angle of 0° could be preferred to be applied in the FFF process to achieve high strength and ductile TPU elastomer.


2015 ◽  
Vol 220-221 ◽  
pp. 767-773 ◽  
Author(s):  
Ilmars Brensons ◽  
Svetlana Polukoshko ◽  
Andris Silins ◽  
Natalija Mozga

Fused Deposition Modeling (FDM) is one of most common ways of rapidly producing a part. Heated material (most commonly – plastic) is used to extrude it through a nozzle and deposit on a surface layer by layer until the part is fully produced. FDM has become one of the most popular in rapid production area due to its low cost, available materials and versatility.Due to fact that part is made layer by layer and each additional layer is deposited on top of a layer that is already a little below material melting point, part maintains different mechanical properties in various directions. These varying mechanical properties affect the part usability in practical applications. Critical point is tensile strength.The objective of this paper is to research optimal processing parameters for FDM prototyping to improve tensile strength. Several rapid prototype models (tensile test samples) with various geometry of longitudinal reinforcement channels were built. As reinforcing material, the epoxy resin was used, because it has higher tensile strength when solid and allows filling channels with various geometry. All made samples were tested for tensile strength. Experiment was carried out to confirm the effectiveness of this approach. From the results, it is found how different amount of epoxy resin affects part tensile strength.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shi Wang ◽  
Xuepeng Song ◽  
Meiliang Wei ◽  
Wu Liu ◽  
Xiaojun Wang ◽  
...  

The tailings and rice straw are waste by-products, and the storage of tailings on the ground and the burning of rice straws will seriously damage the ecological environment. In this study, the effect of different contents of alkalized rice straw (ARS; rice straw was alkalized with 4% NaOH solution) on the mechanical properties and microstructure of cemented tailings backfill (CTB; ARSCTB) was studied through uniaxial compressive strength (UCS), scanning electron microscopy (SEM), and X-ray diffraction (XRD) tests. The results indicated that 1) the UCS of ARSCTB could be improved by ARS. However, with the increase in the ARS content from 0.1 to 0.4 wt%, the UCS showed a monotonous decreasing trend. The UCS improvement effect was best when the ARS content was 0.1 wt%, and at 7, 14, and 28 days curing ages, the UCS increased rate was 6.0, 8.3, 14.7% respectively. 2) The tensile strength of ARSCTB was generally higher than that of CTB and positively correlated with the ARS content. The tensile strength increase rate was 24.1–34.2% at 28 days curing age. 3) The SEM test indicated that the ARS was wrapped by cement hydration products, which improves its connection with the ARSCTB matrix. ARS performed a bridging role, inhibited cracks propagation, and provided drag or pulling force for the block that is about to fall off. Therefore, the mechanical properties of ARSCTB were enhanced. However, under high ARS content, the inhibition of ARS on hydration reaction and the overlap between ARS were not conducive to the improvement of the UCS of ARSCTB. 4) The post-peak residual strength and integrity effect of ARSCTB were greater. It is recommended to add 0.1–0.2 wt% ARS to the backfill with high compressive strength requirements such as the empty field subsequent filling mining method and the artificial pillar. 0.3–0.4 wt% ARS is incorporated into backfill with high tensile strength requirements such as high-stage filling with lateral exposure and artificial roof. This study further makes up for the blank of the application of plant fiber in the field of mine filling and helps to improve the mechanical properties of backfill through low-cost materials.


Author(s):  
Roberta Jachura Rocha

In the late twentieth century, liquid and solid propulsion technologies have been integrated into hybrid engines currently apllied in propulsion launch vehicles and missiles. The reaction of polyol (HTPB) and diisocyanate (IPDI) provides the most versatile of the binders in the production of solid propellants due to its ability to withstand high loads combined with low cost and ease of processing. A propellant based on HTPB obtained in this study was submitted to natural and accelerated aging tests, seeking to evaluate the modifications of mechanical properties as tensile strength, elongation and hardness up to 360 days. The mechanism considered in the aging process is the increase of crosslink density by breaking the double bond contained in the HTPB molecule, which causes the instability of the propellant, increasing its handling risk. Samples of these propellants subjected to aging presented variations in their properties that match the values available in the literature.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 1
Author(s):  
Andrzej Ambroziak ◽  
Paweł Kłosowski

The impact of water-induced degradation on the mechanical properties of the chosen two PTFE-coated, glass threads woven fabrics is investigated in this paper. The paper begins with a survey of literature concerning the investigation and determination of coated woven fabric properties. The authors carried out the uniaxial tensile tests with an application of flat and curved grips to establish the proper values of the ultimate tensile strength and the longitudinal stiffness of groups of specimens treated with different moisture conditions. Despite the water resistance of the main materials used for fabrics manufacturing, the change of the mechanical properties caused by the influence of water immersion has been noticed. The reduction in the tensile strength resulting under waterlogged is observed in the range from 5% to 16% depending on the type of investigated coated woven fabric and direction of weft or warp.


2014 ◽  
Vol 775-776 ◽  
pp. 86-91 ◽  
Author(s):  
Verônica Scarpini Candido ◽  
Michel Picanço Oliveira ◽  
Raissa de Almeida Gouvêa ◽  
Amanda Luiza Bezerra S. Martins ◽  
Sérgio Neves Monteiro

Lignocellulosic fibers with relatively unknowns mechanical properties such as those extracted from the sponge gourd, are being investigated as polymer composites reinforcement. The use of natural fibers are related to environmental , technical, economical and social advantages. An important possibility of improving the mechanical properties is the fact that lignocellulosic fibers may present tensile strength inversely correlated with their diameter. Therefore, this possibility was investigated in the present work regarding sponge gourd fibers by means of the Weibull statistic analysis. The results supported a hyperbolic inverse correlation between the strength of sponge gourd fibers with their diameter. Scanning electron microscopy observation of fibers with different diameters revealed possible mechanisms for the strength inverse correlation with diameter.


2020 ◽  
Vol 897 ◽  
pp. 78-84 ◽  
Author(s):  
Sallal R. Abid ◽  
Ali N. Hilo ◽  
Yasir H. Daek ◽  
Nadheer S. Ayoob

This research aims to investigate the mechanical properties of engineered cementitious composites including compressive strength, splitting tensile strength, modulus of rupture, and load-deflection behavior. In addition, the abrasion test of concrete under water, which is recommended by ASTM C1138, was carried out and its results were compared with the splitting and modulus of rupture test results. Untreated low-cost polyvinyl fibers were used with different volume fractions of 0.5, 1.0, 1.5, and 2.0%. All tests were carried out at the standard age of 28 days. The experimental results showed that the use of 2% of low cost polyvinyl fibers with the engineered cementitious composites led to the increase of the splitting tensile strength and the modulus of rupture by 134% and 287%, respectively, compared to specimens incorporating no fibers. The results showed also that the deflection and the ultimate failure load increases as the fiber content increase.


2018 ◽  
Vol 162 ◽  
pp. 02016 ◽  
Author(s):  
Harith Zaki ◽  
Iqbal Gorgis ◽  
Shakir Salih

This paper studies the uses, of waste paper as an additional material in concrete mixes. Papercrete is a term as the name seems, to imply a mixture of paper and concrete. It is a new, composite material using waste paper, as a partial addition of Portland cement, and is a sustainable, building material due to, reduced amount of waste paper being put to use. It gains, latent strength due to presence of hydrogen bonds in microstructure of paper. Papercrete has been, reported to be a low cost alternative, building construction, material and has, good sound absorption, and thermal insulation; to be a lightweight and fire-resistant material. The percent of waste paper used (after treating) namely (5%, 10%, 15% and 20%) by weight of cement to explore the mechanical properties of the mixes (compressive strength, splitting tensile strength, flexural strength, density), as compared with references mixes, it was found that fresh properties affected significantly by increasing the waste paper content. The compressive strength, splitting tensile strength, flexural strength and density got decreased with increase in the percentage of paper.


Sign in / Sign up

Export Citation Format

Share Document