Mathematical Modeling for Longitudinal Displacement of a Straight Continuously Welded Railway Track and its Numerical Implementation

2011 ◽  
Vol 462-463 ◽  
pp. 801-806 ◽  
Author(s):  
Abreeza Manap

A mathematical model of the longitudinal flexibility of a continuously welded railway track and the methodology for the analysis of the longitudinal displacement of rails under the effects of passing trains is developed to investigate the longitudinal behavior of rails. The purpose of this analysis is to explore the changes of longitudinal stress distribution in the rails due to mechanical loading applied by a travelling train. A half track system is used to derive the equations required to obtain the magnitude of deflection and force of rails and these values are scaled to produce the displacement pattern using the method of superposition. The mathematical model is translated into MATLAB and validation of the program is verified through comparisons of displacement patterns generated by a computer software LONGIN. Analysis of a straight track due to train braking was performed over a track length of 1000 m. The longitudinal displacement obtained showed that maximum longitudinal displacement occur in the middle of the track at the distance of 570 m which is in direct agreement with the published result.


2019 ◽  
Vol 28 ◽  
pp. 01020
Author(s):  
Łukasz Knypiński

The paper presents an algorithm and computer software for the optimization of electromagnetic devices. The mathematical model of the optimization method was presented. The modification of the classical grey wolf algorithm was developed. The modification consists in decreasing the coefficient responsible for the possibility of migration individuals in the permissible area of solved task. The optimization procedure was elaborated in the Borland Delphi environment. The optimization of the rotor of the line-start permanent magnet synchronous motor has been carried out. It has been pointed out that the grey wolf algorithm is effective method for optimization of electromagnetic devices.



Author(s):  
Frantisek Bures

In the report the author offers a mathematical description of the model of the dynamics of the railway autonomous traction module. The autonomous traction module is a multi-mass complex system moving on a railway track. The mathematical model takes into account the parameters and types of connections between the solids of the system, as well as takes into account the sliding forces between the wheels and rails. The mathematical model developed by the author can be applied at theoretical researches of innovative designs of autonomous traction means on railway transport.



1993 ◽  
Vol 46 (7) ◽  
pp. 438-444 ◽  
Author(s):  
Hans True

We discuss the kinematics and dynamics of a wheelset rolling on a railway track. The mathematical model of a suspended wheelset rolling with constant speed on a straight track is set up and its dynamics is investigated numerically. The results are presented mainly on bifurcation diagrams. Several kinds of dynamical behavior is identified within the investigated speed range. We find a stationary equilibrium point at low speeds and at higher speeds symmetric and asymmetric oscillations are found and ranges with chaotic motion are identified. The bifurcations are described.



2020 ◽  
Vol 13 (3) ◽  
pp. 246-267
Author(s):  
Dmytro Kurhan ◽  
Maksym Havrylov

The condition of a railway track is characterized by many indices, including its geometric shape, both in the horizontal and vertical planes. The purpose of this paper is to create a mathematical tool to ensure the operation of track machines for surfacing, tamping, and alignment, which are equipped with automation systems. The developed mathematical model will be integrated into the AS "Strela" software package which is currently installed on machines. Scientific approaches used in the mathematical model allowed to reduce the operation of machines in "window", to simplify the work of maintenance personnel, to create an information base of track parameters, to establish rational parameters of curves during surfacing.



2018 ◽  
Vol 941 ◽  
pp. 504-509
Author(s):  
Božo Smoljan ◽  
Dario Iljkić ◽  
Sunčana Hanza Smokvina ◽  
Luciano Gržinić ◽  
Milenko Jokić ◽  
...  

The research purpose is to upgrade the mathematical modelling and computer simulation of quenching of steel. Based on theoretical analyze of physical processes which exist in quenching systems the mathematical model for steel quenching is established and computer software is developed. The mathematical model of steel quenching is focused on physical phenomena such as heat transfer, phase transformations, mechanical properties and generation of stresses and distortions. Physical properties that were included in the model, such as heat conductivity coefficient, heat capacity and surface heat transfer coefficient were obtained by the inversion method based on Jominy test results. The numerical procedure is based on finite volume method. By the developed algorithm, 3D situation problems such as the quenching of complex cylinders, cones, spheres, etc., can be simulated. The established model of steel quenching can be successfully applied in the practical usage of quenching.



Author(s):  
Vasile Bratu ◽  
Aurel Gaba ◽  
Elena Valentina Stoian ◽  
Florina Violeta Anghelina

Abstract This article presents different solutions to reduce natural gas consumptions of the aluminum melting furnaces, through recovery of the heat from flue gases. In order to be able to analyze the recovery solutions, a mathematical model for energy balance of these furnaces was adapted. This mathematical model allows drawing up energy balances together with the main working technique and economical parameters of these types of furnaces, in actual conditions, and the same, under optimizing conditions, by applying recovery solutions. The mathematical model which can elaborate energy balances for aluminum melting furnaces, was transposed in M. Excel based software, where the quantification of different solutions for natural gas consumption saving is possible. One of the applications of this computer software for an aluminum melting furnace, either for actual working conditions or per upgraded furnace by use an air pre-heater, materials pre-heater, or a regenerative burner system, is presented in this article.



Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.



Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.



Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG



1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.



Sign in / Sign up

Export Citation Format

Share Document