Producing Particleboard Using of Mixture of Bagasse and Industrial Wood Particles

2011 ◽  
Vol 471-472 ◽  
pp. 31-36 ◽  
Author(s):  
Taghi Tabarsa

In this study feasibility of using of mixture of bagasse and industrial wood particles for producing single and three layer particleboard . The aim of this study was to consider bagasse as partially substitute particleboard industry raw material. Variables were type of board at two levels (single and three layer), percentage of added bagasse to industrial particles at 4 levels (20%,30%, 40% and 50%) , and press temp. at two levels (165OC and 180 OC ). In producing three layer particleboard wood and bagasse particles were separated and placed in different layers so that bagasse particles were located in the face layers and wood particles were placed in the core of board. But in one layer particleboard bagasse and wood particles were used in the form of mixture. Effect of variables on physical and mechanical properties of particleboard were determined. Results showed that in three layer particleboard physical and mechanical properties were better than single layer particleboard. Increasing press temperature caused improvement in particleboard properties in most cases due to intermeshing and increasing softening wood and bagasse particles. The optimum treatment in this study was found to be adding 50% bagasse and press temperature of 180 OC.

Teknomekanik ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 14-19
Author(s):  
M Saddikin ◽  
Hendri Nurdin ◽  
Primawati Primawati

The raw materials of the timber industry, especially furniture, are increasingly difficult to obtain in the quantity and quality needed. The development efforts carried out were utilizing Nipah coir waste as a raw material for making particle boards. Particle boards are panel boards made of wood particles or materials containing lignocellulose. Nipah plants contain 27.3% lignin and 36.5% cellulose which has the potential to be used as raw material for particleboard production. This study aims to reveal the physical and mechanical properties of particleboards made from Nipah fruit fibre with adhesive using tapioca flour. The making of particle board is done with a ratio of 90%: 10%, 80%: 20%, 70%: 30%, 60%: 40%, by giving a pressure of 100 kg / cm2. Particle testing is carried out according to the JIS A 5908 standard (2003). From this study, the optimum results were obtained in variations of 60%:40%. The particle physical properties which have an average density value of 1.15 gr / cm3 and an average moisture content of 5.8%. While the mechanical properties obtained by the value of Modulus of Elasticity an average of 21,188.93 kg / cm2. This shows the particle board variations of 60%: 40% produced to meet the JIS A 5908 (2003) standard. Based on the analysis of the quality variations 60%: 40% of particle boards can be recommended as raw materials for interior furniture.


2021 ◽  
Author(s):  
Zhihao Dong ◽  
Qiang Sun ◽  
Weiqiang Zhang

Abstract Clay is a vital industrial raw material, and its physical and mechanical properties undergo significant changes when heated at high temperatures. A good understanding of those properties can provide details on the best use of clay, and may eventually facilitate new application areas. In this paper, the physical and mechanical properties of clay after exposure to high temperatures at two different oxygen levels and cooled in two different ways are studied. In the experiment, the clay samples are heated at high temperatures in anoxic conditions and air. The anoxic conditions are facilitated by a closed crucible. After the sample reaches the target temperature (400°C, 500°C, 600°C, 700°C, 800°C and 900°C), it is cooled to room temperature slowly in the furnace. The samples that are heated in air are either cooled in the furnace or quenched in water. Finally, the appearance of the clay samples in terms of their surface color and development of cracks, as well as their shrinkage, mass loss, hardness, strength and deformation, and the color of the core are examined and measured. The results show that the color of the surface of the clay samples heated in anoxic conditions and air significantly differs, and the color of the core is grayish black at temperatures that are below 800°C, which is possibly related to the oxidation and reduction of iron ions. Cracks in the clay samples partially offset shrinkage. The clay samples quenched in water show larger cracks and lower compressive strength. The mass of the samples does not change at temperatures that exceed 800°C. The hardness also does not change at temperatures that are higher than 700°C. In summary, temperatures between 700°C and 800°C have the most impact on clay because many of the physical properties (including their surface color and color of the core, shrinkage, mass, hardness, and strength) vary greatly at this temperature range.


2022 ◽  
Vol 12 (2) ◽  
pp. 609
Author(s):  
Octavia Zeleniuc ◽  
Camelia Coșereanu

The growing demand for wood and the continued increase of the raw material price have resulted in companies using more efficient wood resources in wood-based products such as blockboard. These boards are used in the field of interior design, especially. The aim of this research was to evaluate the effect of variable environmental conditions on the physical and mechanical properties of blockboard (BK). Two types of commercial BK were exposed in variable environmental conditions (kitchen, bathroom and climatic chamber) for three months. The BK structures were composed of veneer (V) and high-density fibreboards (HDF) for the face sheets and glued, solid wood, resinous strips for the core. The temperature and relative humidity of the air (RH) ranged from 18 °C to 25 °C and from 25% to 90%, respectively. In the climatic chamber (CC), the dynamics of the parameter variations were different than in the other two exposure climates, being determined by the programmed cyclic changes in RH. The changes observed on physical and mechanical properties were more extreme for the blockboards tested in the CC than in the kitchen (K) and bathroom (Ba). After 3 months of exposure in the CC, the thickness and weight of the boards increased by 1.8 and 1.1 times, respectively, for veneered BK, and by 4.4 and 0.4 times, for BK with HDF faces, compared to values recorded in the kitchen. The panels exposed in the CC exhibited the highest increase in moisture content (MC): 41% for veneered BK and 82% for BK with HDF faces after three months of exposure, followed by those exposed in the bathroom and kitchen. Increases in MC determined decreases of flexural properties and soundness surfaces, more evident for HDF face structures compared to V ones.


2015 ◽  
Vol 668 ◽  
pp. 39-47 ◽  
Author(s):  
Raquel Teodoro ◽  
Joabel Raabe ◽  
Danillo Wisky Silva ◽  
Rafael Farinassi Mendes ◽  
Lourival Marin Mendes ◽  
...  

MDP (medium density particleboard) panels are normally graded in composition along their cross-section, using low-size particles and high concentration of adhesive on the particleboard surface (leading to improved physical and mechanical properties), and high-size particles in the particleboard core (interior), which provide higher porosity. Then, the aim of this study was to evaluate the impact of using different contents of bamboo particles in the particleboard core, on their physical and mechanical properties. The production of the panels was carried out using Pinusoocarpa (P) and Bambusavulgaris var. Vittata (B) particles in different contents (100% P, 100% B, 50% de B e 50% de P, 25% de B e 75% de P, 75% de B e 25% de P) in the core of the particleboards. The face of the particleboards were composed of P particles. The panels were produced with nominal density of 0.70 g/cm3, 40:60 face:core relation, 11% urea-formaldehyde adhesive in the faces and 8% adhesive for the core, specific pressure of 3.92 MPa, 160 °C temperature and pressing time of 8 min. After seasoning, the panels were submitted to evaluation of the thickness swelling (TS) and water absorption (WA) after 2 and 24 h of immersion, apparent density (AD), internal bonding (IB), modulus of rupture (MOR) and modulus of elasticity (MOE) under static bending. There was no statistical difference between the treatments for AD, IB, MOR and MOE values. Panels produced with high contents of bamboo particles (100% B, 75% B e 50% B) in the core, presented the lower WA and TS values, leading to improved dimensional stability than panels with only pinus particles. The present results show the important impact of using functionally gradation and bamboo particles on the physical properties of the MDP panels produced.


2015 ◽  
Vol 22 (3) ◽  
pp. 139-141
Author(s):  
Md. Rahaman ◽  
Khurshid Akhter ◽  
S. Hossain ◽  
Md. Islam

Woods of Albizia richardiana has been studied for assessing the suitability for plywood and particleboard manufacture. It was found that 1.5 mm thick smooth and figured veneer can be peeled and dried easily. Three-ply plywood were made using veneer of this species bonded with liquid urea formaldehyde glue of 50% solid content extended with wheat flour and catalyzed (ammonium chloride) with 2% hardener under the three specific pressures, viz,1.05 N/mm2, 1.40 N/mm2, 1.76 N/mm2 in three replications at 6 minute press time and 120°C press temperature. Dry and wet shear test were conducted on the sample and their shear load at failure per unit area and percentage of wood failure were determined. 1.05 N/mm2 pressure for the manufacture of plywood was found to be the best. The physical and mechanical properties of Albizia richardiana wood particleboard were studied. The particleboards were tested for determining the strength and dimensional stability. The tensile strength 0.56N/mm2 passed the British and German standard specification, bending strength (modulus of rupture10.80N/mm2) was found nearest to Indian Standard but low German and British standard specification.


2021 ◽  
Vol 114 ◽  
pp. 70-75
Author(s):  
Radosław Auriga ◽  
Piotr Borysiuk ◽  
Alicja Auriga

An attempt to use „Tetra Pak” waste material in particleboard technology. The study investigates the effect of addition Tetra Pak waste material in the core layer on physical and mechanical properties of chipboard. Three-layer chipboards with a thickness of 16 mm and a density of 650 kg / m3 were manufactured. The share of Tetra Pak waste material in the boards was varied: 0%, 5%, 10% and 25%. The density profile was measured to determine the impact of Tetra Pak share on the density distribution. In addition, the manufactured boards were tested for strength (MOR, MOE, IB), thickness swelling and water absorption after immersion in water for 2 and 24 hours. The tests revealed that Tetra Pak share does not affect significantly the value of static bending strength and modulus of elasticity of the chipboard, but it significantly decreases IB. Also, it has been found that Tetra Pak insignificantly decreases the value of swelling and water absorption of the chipboards.


2016 ◽  
Vol 833 ◽  
pp. 3-10
Author(s):  
Tay Chen Chiang ◽  
Sinin Hamdan ◽  
Mohd Shahril Osman

Every year, the sago processing industry in Sarawak-Mukah had generated huge amount of sago waste after the milling process and scientists have employ the waste into composite material. The fabrication and testing method are based on the Japanese A5908 Industrial Standard. Single-layer particleboards with targeted density of 600kg/m3 were produced from different sizes of sago particles. The mechanical properties of sago waste were investigated to study the feasibility of using this sample as a raw material in particleboard manufacturing. The results of the test demonstrate that samples with different sizes of particles have great influence on the mechanical properties such as Young’s Modulus, Tensile Strength and Impact Strength. The findings show that the performance of the board is affected by the different sizes of sago particles used in the experiment and had proved that sago plants can be used as an alternative raw material in the particleboard manufacturing industry.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1750 ◽  
Author(s):  
Radosław Mirski ◽  
Pavlo Bekhta ◽  
Dorota Dziurka

This study examined the effects of selected types of thermoplastics on the physical and mechanical properties of polymer-triticale boards. The investigated thermoplastics differed in their type (polypropylene (PP), polyethylene (PE), polystyrene (PS)), form (granulate, agglomerate) and origin (native, recycled). The resulting five-ply boards contained layers made from different materials (straw or pine wood) and featured different moisture contents (2%, 25%, and 7% for the face, middle, and core layers, respectively). Thermoplastics were added only to two external layers, where they substituted 30% of straw particles. This study demonstrated that, irrespective of their type, thermoplastics added to the face layers most favorably reduced the hydrophobic properties of the boards, i.e., thickness, swelling, and V100, by nearly 20%. The bending strength and modulus of elasticity were about 10% lower in the experimental boards than in the reference ones, but still within the limits set out in standard for P7 boards (20 N/mm2 according to EN 312).


2014 ◽  
Vol 92 ◽  
pp. 188-193 ◽  
Author(s):  
Tuna Aydin ◽  
Alpagut Kara

Spodumene, which is a lithium alumina silicate, has been used as a raw material in the production of thermal shock resistant whitewares and sanitarywares. The presence of spodumene results in enhancement of mullitization and imparts better physical and mechanical properties to ceramics. In this study, the influence of Lithium alumina silicate phases on the mechanical properties of standard porcelain stoneware body was investigated. Especially solid-solid reactions were observed between spodumene and quartz or spodumene and clay. These solid-solid reactions bring about a newly formed lithium alumina silicate (LAS) phases. Spodumene allows the development of a low viscosity liquid phase and results in a decrease in closed porosity, also with increase in bulk density, bending strength and elastic modulus.


Sign in / Sign up

Export Citation Format

Share Document