The Effect of Lithium Alumina Silicate Phases on Elastic Modulus of Porcelain Tiles

2014 ◽  
Vol 92 ◽  
pp. 188-193 ◽  
Author(s):  
Tuna Aydin ◽  
Alpagut Kara

Spodumene, which is a lithium alumina silicate, has been used as a raw material in the production of thermal shock resistant whitewares and sanitarywares. The presence of spodumene results in enhancement of mullitization and imparts better physical and mechanical properties to ceramics. In this study, the influence of Lithium alumina silicate phases on the mechanical properties of standard porcelain stoneware body was investigated. Especially solid-solid reactions were observed between spodumene and quartz or spodumene and clay. These solid-solid reactions bring about a newly formed lithium alumina silicate (LAS) phases. Spodumene allows the development of a low viscosity liquid phase and results in a decrease in closed porosity, also with increase in bulk density, bending strength and elastic modulus.

2020 ◽  
Vol 841 ◽  
pp. 254-258
Author(s):  
Yustiasih Purwaningrum ◽  
Muhammad Hafiz ◽  
Risky Suparyanto

Buckets are the most important component in backhoe construction, the bucket functions as a digger and carrier component in an excavator. Due to the heavy working media of the excavator so that this component is the most easily damaged part, damage that often occurs is wear caused by friction arising so that the thickness of the bucket is reduced which can eventually cause cracks in the bucket and in continuous use can cause the bucket to crack and broken. Cladding method is done to shorten the time or simplify the repair process is to directly patch the damaged part with a welding layer and then do the grading using a grinding. This study aims to determine the physical and mechanical properties of the material from the cladding process when compared with the raw material, the variations used are raw material, cladding with filler welding, and cladding with plates. The welding process is carried out with GMAW (Gas Metal Arc Welding) and low carbon steel. Welding results will be tested tensile strength, bending strength , impact test, hardness test, chemical composition, and corrosion rate. From the hardness test results showed that the weld metal from plate variation has the highest hardness value of 443 VHN. From the results of tensile testing the basic material has the highest value with 359.08 MPa. From the bending test results the highest value obtained from filler verification with 494.01 Mpa and the highest impact price obtained from the plate variation cladding method with a value of 1.49 J / mm2


2020 ◽  
Author(s):  
Mohamed Guendouz ◽  
Djamila Boukhelkhal ◽  
Alexandra Bourdot ◽  
Oussama Babachikh ◽  
Amine Hamadouche

This work aims to study the valorization and recycling of ceramic wastes (wall tiles) as a fine aggregate instead of sand in the manufacturing of flowable sand concrete (FSC). For this, the sand is substituted with the ceramic wastes at different dosages (0, 5, 10, 15, 20, and 25% by volume of the sand). The influence of the ceramic wastes addition on the physical (workability, density) and mechanical (compressive, flexural and elastic modulus) properties of FSC was studied. The results show that the use of ceramic waste as partial replacement of sand contributes to reduce the workability, bulk density and improves the mechanical strengths of FSC according to the use of 25% of wall tiles waste.


2020 ◽  
Vol 26 (2) ◽  
Author(s):  
Oghenekevwe Abigail Ohwo ◽  
Ighoyivwi Onakpoma ◽  
Eduvie Okoromaraye

Reuse of materials from waste streams is pertinent to achieving sustainable forest production. The enormous wood residues generated at sawmill and the disposal of wood based products poses threat not only to sustenance of the forest resources but also has negative adverse effect on the environment. Limitation exists in the utilization of wood residues as raw material for panel board production in developing countries. This study examined the physical and mechanical properties of graded density fiberboards produced from varying mixture of sawdust and corrugated paper (pulp) at Forestry Research Institute of Nigeria (FRIN) in 2019. A 2x9 factorial experiment in one way analysis of variance was used to test for significant difference between the factors (density and mixing ratio) considered. The result shows that densities of all boards produced varied with mixing proportions. The densities increased with increasing content of corrugated paper. Boards produced at 0.45 g/cm3 showed higher density (0.648 g/cm3), bending strength (MOR) (1.47 N/mm2) and less water absorption (118.69 %) than those produced at 0.65 g/cm3 having values of 0.58 g/cm3, 1.32 N/mm2 and 153.67 %  respectively. However boards produced at 0.65 g/cm3 had higher elasticity in bending (MOE) (209.19 N/mm2) and less thickness swelling (6.29 %) than those produced at 0.45 g/cm3 having values of 74.87 N/mm2 and 10.88% respectively. Panel G (20:60:20), E (30:50:20) and I (10:70:20) of sawdust: corrugated paper: urea formaldehyde respectively showed superior features in physical and mechanical properties with panel I been the best mixture. Conclusively, wood residues (sawdust and corrugated paper) are suitable raw material for fiberboard production.


2020 ◽  
pp. 39-48
Author(s):  
B. O. Bolshakov ◽  
◽  
R. F. Galiakbarov ◽  
A. M. Smyslov ◽  
◽  
...  

The results of the research of structure and properties of a composite compact from 13 Cr – 2 Мо and BN powders depending on the concentration of boron nitride are provided. It is shown that adding boron nitride in an amount of more than 2% by weight of the charge mixture leads to the formation of extended grain boundary porosity and finely dispersed BN layers in the structure, which provides a high level of wearing properties of the material. The effect of boron nitride concentration on physical and mechanical properties is determined. It was found that the introduction of a small amount of BN (up to 2 % by weight) into the compacts leads to an increase in plasticity, bending strength, and toughness by reducing the friction forces between the metal powder particles during pressing and a more complete grain boundary diffusion process during sintering. The formation of a regulated structure-phase composition of powder compacts of 13 Cr – 2 Mо – BN when the content of boron nitride changes in them allows us to provide the specified physical and mechanical properties in a wide range. The obtained results of studies of the physical and mechanical characteristics of the developed material allow us to reasonably choose the necessary composition of the powder compact for sealing structures of the flow part of steam turbines, depending on their operating conditions.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Petar Antov ◽  
Viktor Savov ◽  
Ľuboš Krišťák ◽  
Roman Réh ◽  
George I. Mantanis

The potential of producing eco-friendly, formaldehyde-free, high-density fiberboard (HDF) panels from hardwood fibers bonded with urea-formaldehyde (UF) resin and a novel ammonium lignosulfonate (ALS) is investigated in this paper. HDF panels were fabricated in the laboratory by applying a very low UF gluing factor (3%) and ALS content varying from 6% to 10% (based on the dry fibers). The physical and mechanical properties of the fiberboards, such as water absorption (WA), thickness swelling (TS), modulus of elasticity (MOE), bending strength (MOR), internal bond strength (IB), as well as formaldehyde content, were determined in accordance with the corresponding European standards. Overall, the HDF panels exhibited very satisfactory physical and mechanical properties, fully complying with the standard requirements of HDF for use in load-bearing applications in humid conditions. Markedly, the formaldehyde content of the laboratory fabricated panels was extremely low, ranging between 0.7–1.0 mg/100 g, which is, in fact, equivalent to the formaldehyde release of natural wood.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2015 ◽  
Vol 22 (3) ◽  
pp. 139-141
Author(s):  
Md. Rahaman ◽  
Khurshid Akhter ◽  
S. Hossain ◽  
Md. Islam

Woods of Albizia richardiana has been studied for assessing the suitability for plywood and particleboard manufacture. It was found that 1.5 mm thick smooth and figured veneer can be peeled and dried easily. Three-ply plywood were made using veneer of this species bonded with liquid urea formaldehyde glue of 50% solid content extended with wheat flour and catalyzed (ammonium chloride) with 2% hardener under the three specific pressures, viz,1.05 N/mm2, 1.40 N/mm2, 1.76 N/mm2 in three replications at 6 minute press time and 120°C press temperature. Dry and wet shear test were conducted on the sample and their shear load at failure per unit area and percentage of wood failure were determined. 1.05 N/mm2 pressure for the manufacture of plywood was found to be the best. The physical and mechanical properties of Albizia richardiana wood particleboard were studied. The particleboards were tested for determining the strength and dimensional stability. The tensile strength 0.56N/mm2 passed the British and German standard specification, bending strength (modulus of rupture10.80N/mm2) was found nearest to Indian Standard but low German and British standard specification.


2014 ◽  
Vol 616 ◽  
pp. 27-31 ◽  
Author(s):  
Tomohiro Kobayashi ◽  
Katsumi Yoshida ◽  
Toyohiko Yano

The CNT/B4C composite with Al2O3 additive was fabricated by hot-pressing following extrusion molding of a CNT/B4C paste, and mechanical properties of the obtained composite were investigated. Many CNTs in the composite aligned along the extrusion direction from SEM observation. 3-points bending strength of the composite was slightly lower than that of the monolithic B4C. Elastic modulus and Vickers hardness of the composite drastically decreased with CNT addition. Fracture toughness of the composite was higher than that of the monolithic B4C.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Przemysław Marcin Pikiński ◽  
Jaroslav Szaban ◽  
Gerda Šilingienė ◽  
Robert Korzeniewicz ◽  
Witold Pazdrowski

The aim of this study was to assess the quality of Scots pine (Pinus sylvestris L.) wood depending on the age of trees, forest site conditions and social class of tree position in the stand. Analyses were based on the determination of specific density and static bending strength, as well as the strength quality coefficient. It was to determine changes in physical and mechanical properties of timber depending on tree age as well as growth conditions reflected in the forest site such as fresh mixed coniferous forests and fresh mixed broadleaved forests. Experimental plots were established in 6 localities with 30, 40 and 60-year-old trees. In each of the stands, a 1-hectare experimental plot was established. Based on the measured DBH and tree height, dimensions of three mean sample trees were calculated, while the classification of social class of tree position in the stand developed by Kraft (1884) was also applied. Analyses were conducted on wood samples with 12% moisture content. Strength tests on wood samples were performed on an Instron 33RH204 universal strength testing machine. A detailed analysis showed properties of pine wood are improved with an increase of tree age in both forest sites. Statistically significant differences were observed for wood density and static bending strength. More advantageous properties were observed for wood of pines from the less fertile forest site, i.e., fresh mixed coniferous forests. Density and static bending strength were markedly determined by tree age and growth conditions. The static bending strength quality coefficient from pines growing in the fresh mixed coniferous forests increased between 30 and 40 years, similarly as it was for the fresh mixed broadleaved forests, while between 40 and 60 years, it deteriorated for the fresh mixed coniferous forests. Wood density from the fresh mixed coniferous forests was by 3% to 7% greater than pines growing in fresh mixed broadleaved forests. In turn, static bending strength of wood from pines growing in fresh mixed coniferous forests was by 4% to 10% greater than trees from the fresh mixed broadleaved forests.  Keywords: Scots pine, wood properties, forest site, Poland


Sign in / Sign up

Export Citation Format

Share Document