Effects of Feed Shoe Wheel Speed on Tablet Weight Variability

2011 ◽  
Vol 492 ◽  
pp. 497-500
Author(s):  
Lan Chen ◽  
Lu Zhen Chen ◽  
Xiao Juan Yang ◽  
Ya Ping Yu

In many manufacturing industries, e.g. powder metallurgy, pharmaceuticals, ceramics and foodstuff, die compaction is widely applied. Although die filling has attracted increasing attention recently, very few published studies are available to predict powder flow rate from a moving feed shoe to dies. In this research, a feed shoe with three wheels of a high-speed rotary tablet press was studied. The powder discharge rates from the feed shoe and the tablet weight variability at different feeding wheel paddle speeds were investigated experimentally and numerically. The results of the two methods were in good agreement. According to the experimental results, the minimum deviation of tablet weight was obtained at the speed of 60 rpm. However, the wheel speed of 55 rpm was likely to be the better one on account of the calculations, which will be studied in the future experiments.

2018 ◽  
Vol 548 (1) ◽  
pp. 54-61 ◽  
Author(s):  
W. Grymonpré ◽  
V. Vanhoorne ◽  
B. Van Snick ◽  
B. Blahova Prudilova ◽  
F. Detobel ◽  
...  

2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


2017 ◽  
Vol 2 (4) ◽  
pp. 25
Author(s):  
L. A. Montoya ◽  
E. E. Rodríguez ◽  
H. J. Zúñiga ◽  
I. Mejía

Rotating systems components such as rotors, have dynamic characteristics that are of great importance to understand because they may cause failure of turbomachinery. Therefore, it is required to study a dynamic model to predict some vibration characteristics, in this case, the natural frequencies and mode shapes (both of free vibration) of a centrifugal compressor shaft. The peculiarity of the dynamic model proposed is that using frequency and displacements values obtained experimentally, it is possible to calculate the mass and stiffness distribution of the shaft, and then use these values to estimate the theoretical modal parameters. The natural frequencies and mode shapes of the shaft were obtained with experimental modal analysis by using the impact test. The results predicted by the model are in good agreement with the experimental test. The model is also flexible with other geometries and has a great time and computing performance, which can be evaluated with respect to other commercial software in the future.


1982 ◽  
Vol 104 (4) ◽  
pp. 750-757 ◽  
Author(s):  
C. T. Avedisian

A study of high-pressure bubble growth within liquid droplets heated to their limits of superheat is reported. Droplets of an organic liquid (n-octane) were heated in an immiscible nonvolatile field liquid (glycerine) until they began to boil. High-speed cine photography was used for recording the qualitative aspects of boiling intensity and for obtaining some basic bubble growth data which have not been previously reported. The intensity of droplet boiling was found to be strongly dependent on ambient pressure. At atmospheric pressure the droplets boiled in a comparatively violent manner. At higher pressures photographic evidence revealed a two-phase droplet configuration consisting of an expanding vapor bubble beneath which was suspended a pool of the vaporizing liquid. A qualitative theory for growth of the two-phase droplet was based on assuming that heat for vaporizing the volatile liquid was transferred across a thin thermal boundary layer surrounding the vapor bubble. Measured droplet radii were found to be in relatively good agreement with predicted radii.


2011 ◽  
Vol 487 ◽  
pp. 39-43 ◽  
Author(s):  
L. Tian ◽  
Yu Can Fu ◽  
W.F. Ding ◽  
Jiu Hua Xu ◽  
H.H. Su

Single-grain grinding test plays an important part in studying the high speed grinding mechanism of materials. In this paper, a new method and experiment system for high speed grinding test with single CBN grain are presented. In order to study the high speed grinding mechanism of TC4 alloy, the chips and grooves were obtained under different wheel speed and corresponding maximum undeformed chip thickness. Results showed that the effects of wheel speed and chip thickness on chip formation become obvious. The chips were characterized by crack and segment band feature like the cutting segmented chips of titanium alloy Ti6Al4V.


Author(s):  
Lie Tang ◽  
Jianzhong Ruan ◽  
Robert G. Landers ◽  
Frank Liou

This paper proposes a novel method, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder dispenser, and cladding head) are constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that the VPFRC method is successful in maintaining a uniform track morphology, even when the motion system accelerates and decelerates.


1978 ◽  
Vol 22 (03) ◽  
pp. 140-169
Author(s):  
Milton Martin

A theoretical method is derived for predicting the linearized response characteristics of constant deadrise high-speed planing boats in head and following waves. Comparisons of the theoretical predictions of the pitch and heave response amplitude operators and phase angles with existing experimental data show reasonably good agreement for a wide variety of conditions of interest. It appears that nonlinear effects are more severe at a speed to length ratio of 6 than of, say, 4 or less, principally because of the reduction of the damping ratio of the boat with increasing speed, and the consequent increase in motions in the vicinity of the resonant encounter frequency. However, it is concluded that the linear theory can provide a simple and fast means of determining the effect of various parameters such as trim angle, deadrise, loading, and speed on the damping, natural frequency, and linearized response in waves, and that this can furnish valuable insight into the actual boat dynamics, even though the accurate predictions of large motions and peak accelerations would require a nonlinear analysis.


1971 ◽  
Vol 8 (03) ◽  
pp. 327-333
Author(s):  
R. H. Salzman

This paper presents a semi-graphical approach for finding the first critical speed of a stepped shaft with finite bearing stiffness. The method is particularly applicable to high-speed turbine rotors with journal bearings. Using Rayleigh's Method and the exact solution for whirling of a uniform shaft with variable support stiffness, estimates of the lowest critical speed are easily obtained which are useful in the design stage. First critical speeds determined by this method show good agreement with values computed by the Prohl Method for the normal range of bearing stiffness. A criterion is also established for determining if the criticals are "bearing critical speeds" or "bending critical speeds," which is of importance in design. Discusser E. G. Baker


Author(s):  
RubÉn Ramos Islas ◽  
Leopoldo Villafuerte Robles

<p><strong>Objective: </strong>The aim of this work is the assessment of an eventual improvement in flowability of free flowing excipients on formulations containing Noveon AA1 and their influence on compactibility and release profile.</p><p><strong>Methods: </strong>Mixtures containing 20% Noveon AA1 and variable proportions of metronidazole and the free flowing excipients Prosolv EasyTab and GalenIQ 720 and 721were tested in their powder flow rate and the tablets compactibility and released profiles.</p><p><strong>Results: </strong>The powder flowability obtained with GalenIQ is about 20% better than that obtained with EasyTab. However, it is lesser than that considered as acceptable for a high-speed tableting machine. EasyTab reduces the drug release up to a half along with a continuing flattening of the release profile. This is attributed to an increasing tortuosity of the drug release path as the proportion EasyTab increases. GalenIQ restricts drug release in about a third with a lesser change in the release mechanism. This is attributed to competition for the available water inside the tablet, between the hydrating Noveon AA1 and the dissolving GalenIQ. The compactibility of the metronidazole/Noveon AA1 mixtures increases after addition of EasyTab in about 3.5 N per unit percentage of the added excipient while GalenIQ does it in about 2.6 N.</p><p><strong>Conclusion: </strong>The powder flowability of mixtures of metronidazole with Noveon AA1 was not suited for direct compression after addition of 40% of the free-flow excipient. The free-flow excipients reduce the metronidazole release rate and increase its compactibility. It was not observed a different clear functioning between both types of GalenIQ.</p>


Sign in / Sign up

Export Citation Format

Share Document