Synthesis and Properties of SnS Thin Films by Chemical Bath Deposition

2012 ◽  
Vol 509 ◽  
pp. 333-338 ◽  
Author(s):  
Dong Lin Xia ◽  
Jun Xu ◽  
Wen Qing Shi ◽  
Pan Lei ◽  
Xiu Jian Zhao

Tin sulphide (SnS) thin films have been deposited on glass substrate by chemical bath deposition. The precursor solution was prepared from tin (II) chloride dihydrate, thioacetamide. Triethanolamine, ammonia and ammonium chloride were used as complexant, solvent and buffer solution, respectively. The crystallographic structure, morphology and optical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy and UV-Vis spectrophotometer. XRD analysis shows that SnS thin films were polycrystalline and had orthorhombic structure, and SEM micrographs reveal that SnS thin films were densely packed surface coverage and consists of large flowerlike grains. SnS thin films with the optical bandgap of 1.3 eV were achieved at 300 °C.

2012 ◽  
Vol 443-444 ◽  
pp. 655-659
Author(s):  
Shi Gang Wu ◽  
Hong Ying Zhang ◽  
Jian Da Shao ◽  
Zheng Xiu Fan

The influence of addition of Y2O3on the structure of ZrO2thin films and bulk material was studied employing X-ray diffraction (XRD) analysis. The films were prepared by the electron-beam evaporation method. XRD analysis permits the study of the stabilization process. For pure ZrO2thin film and coating material, the crystallographic structure is monoclinic phase; with increasing Y2O3mole percent, the structure of Y2O3stabilized ZrO2(YSZ) material changes from a mixture of monoclinic and cubic phase to a single cubic phase. Furthermore, calculated results of grain size show that YSZ thin film and coating material have the same crystallization trend.


1998 ◽  
Vol 545 ◽  
Author(s):  
J. C. Caylor ◽  
A. M. Stacy ◽  
T. Sands ◽  
R. Gronsky

AbstractBulk skutterudite phases based on the CoAs3 structure have yielded compositions with a high thermoelectric figure-of-merit (“ZT”) through the use of doping and substitutional alloying. It is postulated that further enhancements in ZT may be attained in artificially structured skutterudites by engineering the microstructure to enhance carrier mobility while suppressing the phonon component of the thermal conductivity. In this work the growth and properties of singlephase CoSb3 and IrSb3 skutterudite thin films are reported. The films are synthesized by pulsed laser deposition (PLD) where the crystallinity can be controlled by the deposition temperature. Powder X-ray diffraction (PXRD), Transmission electron microscopy (TEM) and Rutherford- Back Scattering (RBS) were used to probe phase, structure, morphology and stoichiometry of the films as functions of growth parameters and substrate type. A substrate temperature of 250°C was found to be optimal for the deposition of the skutterudites from stoichiometric targets. Above this temperature the film is depleted of antimony due to its high vapor pressure eventually reaching a composition where the skutterudite structure is no longer stable. However, when films are grown from antimony-rich targets the substrate temperature can be increased to at least 350°C while maintaining the skutterudite phase. In addition, adhesion properties of the films are explored in terms of the growth mode and substrate interaction. Finally, preliminary room temperature electrical and thermal measurements are reported.


1990 ◽  
Vol 191 ◽  
Author(s):  
Michael E. Geusic ◽  
Alan F. Stewart ◽  
Larry R. Pederson ◽  
William J. Weber ◽  
Kenneth R. Marken ◽  
...  

ABSTRACTExcimer laser ablation with an in situ heat treatment was used to prepare high quality superconducting YBa2Cu3O7−x thin films on (100)-SrTiO3 and (100)-LaAlO3 substrates. A pulsed excimer laser (XeCl; 308 nm) was used to ablate a rotating, bulk YBa2Cu3O7−x target at a laser energy density of 2–3 J/cm2. Based on four-probe dc resistance measurements, the films exhibited superconducting transition temperatures (Tc, midpoint) of 88 and 87K with 2K (90–10%) transition widths for SrTiO3 and LaAlO3, respectively. Transport critical current densities (Jc) measured at 77K were 2 × 106 and 1 × 106 A/cm2 in zero field for SrTiO3 and LaAlO3, respectively. X-ray diffraction (XRD) analysis showed the films to be highly oriented, with the c-axis perpendicular to the substrate surface.


2006 ◽  
Vol 514-516 ◽  
pp. 1155-1160 ◽  
Author(s):  
Talaat Moussa Hammad

Sol gel indium tin oxide thin films (In: Sn = 90:10) were prepared by the sol-gel dipcoating process on silicon buffer substrate. The precursor solution was prepared by mixing SnCl2.2H2O and InCl3 dissolved in ethanol and acetic acid. The crystalline structure and grain orientation of ITO films were determined by X-ray diffraction. The surface morphology of the films was characterized by scanning electron microscope (SEM). Optical transmission and reflectance spectra of the films were analyzed by using a UV-visible spectrophotometer. The transport properties of majority charge carriers for these films were studied by Hall measurement. ITO thin film with electrical resistivity of 7.6 ×10-3 3.cm, Hall mobility of approximately 2 cm2(Vs)-1 and free carrier concentration of approximately 4.2 ×1020 cm-3 are obtained for films 100 nm thick films. The I-V curve measurement showed typical I-V characteristic behavior of sol gel ITO thin films.


2012 ◽  
Vol 581-582 ◽  
pp. 570-573
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
Jian Long Wang ◽  
He Zhang Chen ◽  
...  

The LiFe0.98Ni0.01Nb0.01PO4/C was synthesized by carbon reduction route using FePO4•2H2O as precursor. The LiFe0.98Ni0.01Nb0.01PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis, SEM and TEM images show that sample has the good crystal structure, morphology and carbon coating. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 164.6 mAh•g−1 at current density of 0.1 C. The capacity retention reaches 99.8% after 100 cycles at 0.1C.


2009 ◽  
Vol 609 ◽  
pp. 243-247 ◽  
Author(s):  
H. Moualkia ◽  
S. Hariech ◽  
M.S. Aida

The present work deals with the preparation and characterization of cadmium sulfur (CdS) thin films. These films are prepared by chemical bath deposition on the well cleaned glass substrates. The thickness of the samples was measured by using profilometer DEKTAK, structural and optical properties were studied by X-ray diffraction analysis, and UV-visible spectrophotometry. The optical properties of the films have been investigated as a function of temperature. The band gap energy and Urbach energy were also investigated as a function of temperature. From the transmittance data analysis the direct band gap ranges from 2.21 eV to 2.34 eV. A dependence of band gap on temperature has been observed and the possible raisons are discussed. Transmission spectra indicates a high transmission coefficient (75 %). Structural analysis revealed that the films showed cubic structure, and the crystallite size decreased at a higher deposition temperature.


2014 ◽  
Vol 25 (7) ◽  
pp. 3160-3165 ◽  
Author(s):  
M. Safonova ◽  
P. K. Nair ◽  
E. Mellikov ◽  
A. R. Garcia ◽  
K. Kerm ◽  
...  

2007 ◽  
Vol 546-549 ◽  
pp. 2137-2142 ◽  
Author(s):  
Wen Wen Wang ◽  
Tian Min Wang

ZnO:Al(ZAO) thin film is a kind of transparent conductive functional material which has a potential application in the solar cell and Atom Oxygen resisting systems of spacecrafts. High performance ZAO thin films were prepared by reactive magnetron sputtering and then irradiated by γ-ray with different dose or rate of irradiation. The as-deposited sample and irradiated ones were characterized by X-ray Diffraction, Scanning Electron Microscopy and Hall-effect measurement to investigate the dependences of the structure, morphology and electrical properties of ZAO on the dose and rate of γ-ray irradiation. Measurement of Positron Annihilation Doppler-Broadening Spectroscopy was carried out to study the variation of the defects in ZAO thin films before and after irradiation. It is indicated that γ-ray will excite the carriers, which are electrons in ZAO. A high rate of γ-ray irradiation could slightly destroy the bonds of Zn-O and decrease the crystallinity, while the effect of low rate irradiation is similar to heat annealing and increase the crystallinity of ZAO thin films. γ-ray has no apparent influences on the negative vacancy defects in ZAO thin film.


2010 ◽  
Vol 644 ◽  
pp. 113-116
Author(s):  
L.A. García-Cerda ◽  
Bertha A. Puente Urbina ◽  
M.A. Quevedo-López ◽  
B.E. Gnade ◽  
Leo A. Baldenegro-Perez ◽  
...  

In this study, HfxZr1-xO2 (0 < x < 1) thin films were deposited on silicon wafers using a dip-coating technique and by using a precursor solution prepared by the Pechini route. The effects of annealing temperature on the structure and morphological properties of the proposed films were investigated. HfxZr1-xO2 thin films with 1, 3 and 5 layers were annealed in air for 2 h at 600 and 800 °C and the structural and morphological properties studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results show that the films have monoclinic and tetragonal structure depending of the Hf and Zr concentration. SEM photographs show that all films consist of nanocrystalline grains with sizes in the range of 6 - 13 nm. The total film thickness is about 90 nm.


Sign in / Sign up

Export Citation Format

Share Document