Numerical Investigation of Temperature and Phase Development of (Deformation-) Dilatometer Specimens

2014 ◽  
Vol 611-612 ◽  
pp. 1539-1544
Author(s):  
Stefan Lutz ◽  
Johannes Weninger ◽  
Bastian Helldörfer ◽  
Marion Merklein

The Gleeble 3500 thermo-mechanical testing machine with ISO-Q dilatometer set-up allows the creation of time temperature transformation diagrams at high cooling rates, after deformation and under constant load with a simple experimental set-up. An isothermal plane with temperature gradients perpendicular to this plane arises in the sample which is used for dilatometrical evaluation. The homogeneity and size of this isothermal region has a decisive influence on the measurement results, but cannot be measured with sufficient accuracy. To gain an accurate understanding of the processes in the sample, a coupled thermo-electrical, thermo-metallurgical, thermo-mechanical finite element model of the experiments is set up. To map the temperature control circuit of the machine, a PID controller is implemented, which controls the voltage of the conductive sample heating between the simulation steps. By comparing the temperature and hardness distribution with the experiments, it is shown that in this way the temperature distribution and phase transformation can be mapped. By the findings, the experimental setup was adjusted. This led to an improvement of the measurement results.

2021 ◽  
Vol 13 (6) ◽  
pp. 3218
Author(s):  
Guoqing Di ◽  
Ziyin Xie ◽  
Jingyi Guo

The vibration caused by railways is an environmental constraint in the development of over-track buildings. To study the influence of environmental vibration from the high-speed railway on over-track buildings, a finite element model including track, soil, and buildings was set up. Based on the vertical vibration acceleration sampled on the rail, the equivalent line load acting on rails vertically was obtained by a simplified model. On the basis of verifying the simulation model by measurement results, the vertical vibration induced by high-speed railways in over-track buildings was studied quantitatively. Through introducing correction terms relating to the thickness and height of the over-track platform, the story number, and the structure of the over-track building, an existing model released by the railway industry of China was improved. Compared with the existing model only being suitable for predicting vertical vibration of the first floor, the improved model can predict vertical vibration of different floors.


2019 ◽  
Vol 32 (1) ◽  
Author(s):  
Chengliang Hu ◽  
Xuejiao Bai ◽  
Minjun Tang ◽  
Xiaofeng Tang ◽  
Zhen Zhao

Abstract The magnetic properties of the claw pole have a direct effect on the output power of a generator. Many methods can be used to measure these magnetic properties, each with its own advantages, but an important shortcoming is that all are destructive. In this study, a new non-destructive method to measure the magnetic properties of claw pole was proposed and a corresponding testing set-up was designed. A finite-element model was constructed to simulate the measurement process. Results proved that the measured magnetization-like curves had good agreement with the trend of the input magnetic curves and the effect of the positioning error in the measuring process could be neglected. To further validate the new method, seven types of claw poles of different materials subjected to different heat-treatment processes were forged and tested by both the new method and the conventional ring-sample method. Compared with the latter, the new method showed better consistency, relatively higher accuracy, and much stronger stability of measurement results; however, its sensitivity needs to be improved. The effects of material compositions and heat-treatment parameters on the magnetic properties of the claw pole were briefly analyzed.


Author(s):  
A. A. Gorbatovskiy

The article presents results of strength tests of bismuth telluride prismatic samples obtained by growing crystals. These crystals have semiconductor properties and are used in the heat machines, the run-ability of which largely depends on the strength of crystals. Data available in the literature are significantly different from each other. It has been shown that, the most consistent strength tests results are obtained in case of bend testing. The measurement results of the elasticity modulus and tensile strength are given. For tests, an INSTRON testing machine with maximum direct stress of the 1000 H was used.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3732
Author(s):  
Krzysztof Górecki ◽  
Przemysław Ptak ◽  
Tomasz Torzewicz ◽  
Marcin Janicki

This paper is devoted to the analysis of the influence of thermal pads on electric, optical, and thermal parameters of power LEDs. Measurements of parameters, such as thermal resistance, optical efficiency, and optical power, were performed for selected types of power LEDs operating with a thermal pad and without it at different values of the diode forward current and temperature of the cold plate. First, the measurement set-up used in the paper is described in detail. Then, the measurement results obtained for both considered manners of power LED assembly are compared. Some characteristics that illustrate the influence of forward current and temperature of the cold plate on electric, thermal, and optical properties of the tested devices are presented and discussed. It is shown that the use of the thermal pad makes it possible to achieve more advantageous values of operating parameters of the considered semiconductor devices at lower values of their junction temperature, which guarantees an increase in their lifetime.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042098705
Author(s):  
Xinran Wang ◽  
Yangli Zhu ◽  
Wen Li ◽  
Dongxu Hu ◽  
Xuehui Zhang ◽  
...  

This paper focuses on the effects of the off-design operation of CAES on the dynamic characteristics of the triple-gear-rotor system. A finite element model of the system is set up with unbalanced excitations, torque load excitations, and backlash which lead to variations of tooth contact status. An experiment is carried out to verify the accuracy of the mathematical model. The results show that when the system is subjected to large-scale torque load lifting at a high rotating speed, it has two stages of relatively strong periodicity when the torque load is light, and of chaotic when the torque load is heavy, with the transition between the two states being relatively quick and violent. The analysis of the three-dimensional acceleration spectrum and the meshing force shows that the variation in the meshing state and the fluctuation of the meshing force is the basic reasons for the variation in the system response with the torque load. In addition, the three rotors in the triple-gear-rotor system studied show a strong similarity in the meshing states and meshing force fluctuations, which result in the similarity in the dynamic responses of the three rotors.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2547
Author(s):  
Elena Garcia ◽  
Julio Torres ◽  
Nuria Rebolledo ◽  
Raul Arrabal ◽  
Javier Sanchez

Reinforced concrete may corrode in anoxic environments such as offshore structures. Under such conditions the reinforcement fails to passivate completely, irrespective of chloride content, and the corrosion taking place locally induces the growth of discrete pits. This study characterised such pits and simulated their growth from experimentally determined electrochemical parameters. Pit morphology was assessed with an optical profilometer. A finite element model was developed to simulate pit growth based on electrochemical parameters for different cathode areas. The model was able to predict long-term pit growth by deformed geometry set up. Simulations showed that pit growth-related corrosion tends to maximise as cathode area declines, which lower the pitting factor. The mechanical strength developed by the passive and prestressed rebar throughout its service life was also estimated. Passive rebar strength may drop by nearly 20% over 100 years, whilst in the presence of cracking from the base of the pit steel strength may decline by over 40%.


2013 ◽  
Vol 456 ◽  
pp. 576-581 ◽  
Author(s):  
Li Fu Xu ◽  
Na Ta ◽  
Zhu Shi Rao ◽  
Jia Bin Tian

A 2-D finite element model of human cochlea is established in this paper. This model includes the structure of oval window, round window, basilar membrane and cochlear duct which is filled with fluid. The basilar membrane responses are calculated with sound input on the oval window membrane. In order to study the effects of helicotrema on basilar membrane response, three different helicotrema dimensions are set up in the FE model. A two-way fluid-structure interaction numerical method is used to compute the responses in the cochlea. The influence of the helicotrema is acquired and the frequency selectivity of the basilar membrane motion along the cochlear duct is predicted. These results agree with the experiments and indicate much better results are obtained with appropriate helicotrema size.


2013 ◽  
Vol 589-590 ◽  
pp. 157-162
Author(s):  
Ya Hui Hu ◽  
Qing Yun Zhang ◽  
Xiao Yu Yue

The changes of drilling forces during bone drilling provide a useful index for evaluating the risk of potential damage to the bone. The aim of the work is that an elastic-plastic dynamic finite element model is used to simulate the process of a drill bit drilling through the bone. The finite element model was set up in the Abaqus6.11; the prediction model of the drilling force was gotten by using the regression orthogonal experiment and data processing software Matlab7.0. Diverse values of drilling speed, feed rate and drill diameter are important factors which will lead to changes in the drilling forces. By controlling the drilling parameters can obtain the optimal drilling force. The results show that the diameter has the greatest influence on the drilling force, the drilling speed the second, the feed rate the last.


2008 ◽  
Vol 47-50 ◽  
pp. 817-820 ◽  
Author(s):  
R.L. Dai ◽  
W.H. Liao

It has been found that the composites of carbon nanotubes (CNTs) and epoxy resin could greatly enhance damping ability while the stiffness is kept high. In this paper, carbon nanotube enhanced epoxy resin is fabricated. A testing apparatus for obtaining composite dynamic properties is set up. In particular, the loss factors are measured. Experimental results show that CNT additive can provide the composite with several times higher damping as compared with pure epoxy. A finite element model is built to simulate the composite damping. CNT diameter and segment length are investigated using the developed model. Results show that composite damping is insensitive to CNT segment length while the effect of CNT diameter on composite damping is significant.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000486-000493 ◽  
Author(s):  
Aditi Mallik ◽  
Roger Stout

For high power IC chips, as device size inevitably decreases, the wire diameter unfortunately must decrease due to the need of finer pitch wires. Fusing or melting of wirebonds thus increasingly becomes one of the potential failure issues for such IC's. Experiments were performed under transient loads on dummy packages having aluminum, gold, or copper wires of different dimensions. A finite element model was constructed that correlates very well with the observed maximum operating currents for such wirebonds under actual experimental test conditions. A qualitative observation of typical current profiles, as fusing conditions were approached, was that current would reach a maximum value very early in the pulse, and then fall gradually. One goal achieved through the modeling was to show that the current in the wire falls with time due to the heating of the wire material. Correspondingly, the wire reaches the melting temperature not at the peak current but rather at the end of pulse. Further, modeling shows that knowledge of external resistance and inductance of the experimental set up are highly significant in determining the details of a fusing event, but if known along with the temperature-dependent wire properties, the simulation can predict the correct voltage and current response of the part with 2% error. On the other hand, lack of external circuit characteristics may lead to completely incorrect results. For instance, the assumption that current is constant until the wire heats to fusing temperature, or that current and temperature both rise monotonically to maximum values until the wire fuses, are almost certain to be wrong. The work has been carried out for single pulse events as well as pulse trains.


Sign in / Sign up

Export Citation Format

Share Document