Development of Ferrite–Bainite Dual Phase (FBDP) High Strength Steel for Automotive Industries

2014 ◽  
Vol 622-623 ◽  
pp. 840-845 ◽  
Author(s):  
Taher El-Bitar ◽  
Eman El-Shenawy ◽  
Maha El-Meligy

The proposed Ferrite-Bainite Dual Phase (FBDP) steel is suitable for automotive industries. The steel satisfies high specific strength (strength/weight ratio), which is positively reflected on both fuel consumption and crashing resistance.

Author(s):  
I.R. Antypes ◽  
◽  
V.V. Zaitsev ◽  

Currently, the use of composite materials is increasingly used in various areas of the national economy, including the aviation industry. The materials of this article are devoted to the study of the use of composite materials for the manufacture of aircraft landing gear in comparison with the traditionally used brand of steel. As a result of the work carried out, it was found that the slope made of carbon fiber showed a critical stress twice as high as its design made of 30xgsn2a steel. In addition, carbon plastics are superior to high-strength steel in terms of specific strength, stiffness, and tensile strength.


2019 ◽  
Vol 777 ◽  
pp. 828-834 ◽  
Author(s):  
Elyorjon Jumaev ◽  
Sung Hwan Hong ◽  
Jeong Tae Kim ◽  
Hae Jin Park ◽  
Young Seok Kim ◽  
...  

2018 ◽  
Vol 108 (10) ◽  
pp. 639-645
Author(s):  
P. Groche ◽  
J. Günzel ◽  
T. Suckow

Zur Ausnutzung der hohen spezifischen Festigkeit und folglich Eignung als Leichtbauwerkstoff von EN AW-7075 bedarf es neben den Umform- auch Wärmebehandlungsprozessen, die im Folgenden in den Umformprozess integriert werden und die Prozesskette somit deutlich kürzer und effizienter gestalten. Dieser Fachbeitrag zeigt, welches Produktivitäts- und Leichtbaupotenzial durch eine Inline-Wärmebehandlung erschlossen werden kann.   To be able to exploit the high specific strength and thus suitability of EN AW-7075 as a lightweight construction material, it requires not only forming but also heat treatment processes. The latter become integrated into the forming process and thus make the process chain significantly shorter and more efficient. This paper points out the potential for productivity and lightweight construction to be tapped by inline heat treatment.


2019 ◽  
Vol 23 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Jiannan Li ◽  
Aiping Zhou

Bamboo is a kind of green material with high specific strength, while the hollow tubular structure makes it rather hard to be utilized in structure. Glue and hot-pressing processes make laminated bamboo lumber rectangular cross section and with high strength properties. The dowel-type connection can be used in I-joist instead of the costly adhesive, while the behaviors of which are extremely complicated. European yield model is confirmed to be an effective method to estimate loading capacity of connection and is adopted by various standard and design codes. This article focused on a kind of connection innovatively with laminated bamboo lumber dowel. The embedment tests were carried out to study the embedment strength of laminated bamboo lumber members. Connection tests under lateral load were conducted to investigate the performance and loading capacity. Finally, theoretical results determined by design rules in current codes were compared with experimental results


Author(s):  
Ben Young ◽  
Hai-Ting Li

High strength steels are becoming increasingly attractive for structural and architectural applications due to their superior strength-to-weight ratio which could lead to lighter and elegant structures. The stiffness and strength of high strength steels may reduce after exposure to fire. The post-fire mechanical properties of high strength steels have a crucial role in evaluating the residual strengths of these materials. This paper presents an experimental investigation on post-fire mechanical properties of cold-formed high strength steels. A series of tensile coupon tests has been carried out. The coupon specimens were extracted from cold-formed square hollow sections with nominal yield stresses of 700 and 900 MPa at ambient temperature. The specimens were exposed to various elevated temperatures ranged from 200 to 1000 °C and then cooled down to ambient temperature before tested to failure. Stress-strain curves were obtained and the mechanical properties, namely, Young’s modulus, yield stress (0.2% proof stress) and ultimate strength, of the cold-formed high strength steel materials after exposure to elevated temperatures were derived. The post-fire retention factors that obtained from the experimental investigation were compared with existing predictive equations in the literature. New predictive equations are proposed to determine the residual mechanical properties of high strength steels after exposure to fire. It is shown that the proposed predictive equations are suitable for both cold-formed and hot-rolled high strength steel materials with nominal yield stresses ranged from 690 to 960 MPa.


2018 ◽  
Vol 941 ◽  
pp. 492-497
Author(s):  
Kuo Cheng Yang ◽  
J.F. Tu ◽  
L.J. Chiang ◽  
W.J. Cheng ◽  
C.Y. Huang

Recently, due to the requirements of lightweight and safety, the grade of 980MPa high-strength steel has the demand of high hole expansibility and high yield strength. Due to the large difference of hardness between the soft ferrite and hard martensite, the traditional DP980Y dual phase steel has poor hole expansibility. In order to improve the hole expansibility of DP980Y dual phase steel, the best way is to modify the microstructure into a single-phase to eliminate the large difference of hardness. In this paper, the steel of nearly full bainite microstructure with small amount of ferrite and M/A constituents was studied. Compared to the DP980Y dual phase steel, it was found that this modified steel with a single-phase microstructure has the same grade of 980MPa of tensile strength, but can achieve the demand of higher yield strength and hole-expansion ratio. This study shows reducing the amount of ferrite can increase the homogeneity of matrix with the single phase to improve the hole expansibility. In addition, the use of lower bainite transformation temperature and lower carbon content has the higher hole-expansion ratio due to the less amount of M/A constituents.


2021 ◽  
pp. 749-772
Author(s):  
Wei Wang ◽  
Muxin Yang ◽  
Dingshun Yan ◽  
Ping Jiang ◽  
Fuping Yuan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document