Mechanical behavior of laminated bamboo lumber dowel-type connection

2019 ◽  
Vol 23 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Jiannan Li ◽  
Aiping Zhou

Bamboo is a kind of green material with high specific strength, while the hollow tubular structure makes it rather hard to be utilized in structure. Glue and hot-pressing processes make laminated bamboo lumber rectangular cross section and with high strength properties. The dowel-type connection can be used in I-joist instead of the costly adhesive, while the behaviors of which are extremely complicated. European yield model is confirmed to be an effective method to estimate loading capacity of connection and is adopted by various standard and design codes. This article focused on a kind of connection innovatively with laminated bamboo lumber dowel. The embedment tests were carried out to study the embedment strength of laminated bamboo lumber members. Connection tests under lateral load were conducted to investigate the performance and loading capacity. Finally, theoretical results determined by design rules in current codes were compared with experimental results

2018 ◽  
Vol 108 (10) ◽  
pp. 639-645
Author(s):  
P. Groche ◽  
J. Günzel ◽  
T. Suckow

Zur Ausnutzung der hohen spezifischen Festigkeit und folglich Eignung als Leichtbauwerkstoff von EN AW-7075 bedarf es neben den Umform- auch Wärmebehandlungsprozessen, die im Folgenden in den Umformprozess integriert werden und die Prozesskette somit deutlich kürzer und effizienter gestalten. Dieser Fachbeitrag zeigt, welches Produktivitäts- und Leichtbaupotenzial durch eine Inline-Wärmebehandlung erschlossen werden kann.   To be able to exploit the high specific strength and thus suitability of EN AW-7075 as a lightweight construction material, it requires not only forming but also heat treatment processes. The latter become integrated into the forming process and thus make the process chain significantly shorter and more efficient. This paper points out the potential for productivity and lightweight construction to be tapped by inline heat treatment.


2015 ◽  
Vol 813-814 ◽  
pp. 208-212
Author(s):  
S. Ghanaraja ◽  
K.L. Vinuth Kumar ◽  
K.S. Ravikumar ◽  
B.M. Madhusudan

The Synthesis of aluminium matrix composites is receiving considerable emphasis in meeting the requirements of various industries. Due to the desired properties such as low weight, high specific strength, good corrosion resistance and excellent wear resistance, they have received a great interest in the recent years. Metal-matrix composites (MMCs) based on aluminium and magnesium has emerged as an important class of materials and Al2O3can be considered as ideal reinforcements, due to their high strength, high aspect ratio and thermo-mechanical properties. The objective of this work is to reinforce Al 1100-Mg alloy with different wt% of Al2O3(0, 3, 6, 9 and 12) was added by melt stirring method and Extrusion is carried out (extrusion ratio of 12.25) for the same alloy and composites. Mechanical property like hardness and tensile properties have been investigated for cast and extruded of base alloy and composites.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Adam Guo

With so many advantages such as environmental friendliness, fast-growing, high strength-to-weight ratio, sustainability, and the capability of being reused or recycled, bamboo structures has gained more and more attention for scientists. This paper shows the feasibility of the design of an office building using laminated bamboo lumbers in compliance with the Chinese standards as GB50009-2012, GB50011-2010, GB50016-2014, and GB 50005-2017. Detailed information about the materials and building were offered. A lot of related construction photos were offer to show the building process. This case is a very good application example for laminated bamboo lumber buildings and has attracted many engineers’ attention in industrial field. Laminated bamboo lumber structures should have a bright future. It should become one main structure form in civil engineering area. However, due to none existing engineered bamboo structures design standard now, engineers have to take reference to standards for timber structures. Setting up the standard system is very important for engineered bamboo structures’ application. Through more and more scientists’ hard working, it might be not a long way to build the code system.


2017 ◽  
Vol 107 (10) ◽  
pp. 695-699
Author(s):  
B.-A. Prof. Behrens ◽  
S. Hübner ◽  
H. Vogt

Der Fachartikel befasst sich mit der Umformbarkeit von höchstfesten Aluminiumlegierungen der 7xxx-Reihe. Diese haben eine hohe spezifische Festigkeit, weshalb sie ein großes Leichtbaupotenzial besitzen. Eine Umformung bei Raumtemperatur ist allerdings nur bedingt möglich und somit ein Einsatz im Automobilkarosseriebau derzeit kaum umsetzbar. Daher werden für diese Legierungen verschiedene Prozessrouten untersucht, welche durch Erwärmung der Platinen und Werkzeuge die Umformbarkeit verbessern.   This study deals with the formability of high-strength aluminum alloys of the 7xxx-series. These alloys have a high specific strength and, therefore, a high lightweight potential. A limited formability at room temperature of these alloys, however, limits the use in automotive body construction. To increase the formability there are different approaches. In this study, the influence of the blank as well as the forming tool temperature is investigated.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 778
Author(s):  
Stefan Gneiger ◽  
Johannes A. Österreicher ◽  
Aurel R. Arnoldt ◽  
Alois Birgmann ◽  
Martin Fehlbier

Due to their high specific strength, magnesium alloys are promising materials for further lightweighting in mobility applications. In contrast to casting and forming processes, additive manufacturing methods allow high degrees of geometrical freedom and can generate significant weight reductions due to load-specific part design. In wire arc additive manufacturing processes, large parts can be produced with high material utilization. Process-inherent high melt temperatures and solidification rates allow for the use of magnesium alloys which are otherwise complicated to process; this enables the use of unconventional alloying systems. Here, we report the development of a Mg-Al-Zn-Ca-rare earth alloy for wire arc additive manufacturing (WAAM). Compared to parts made of commercially available filler wire, the newly developed alloy achieves a higher strength (approx. +9 MPa yield strength, +25 MPa ultimate tensile strength) in WAAM.


2022 ◽  
Vol 8 ◽  
Author(s):  
M. Zhang ◽  
Y.Q. Song ◽  
H.J. Lin ◽  
Z. Li ◽  
W. Li

Ti-based metallic glasses (MGs) possess high specific strength, low elastic modulus, high elasticity, high wear and corrosion resistance, and excellent biocompatibility, which make them highly attractive as lightweight high-strength materials as well as biomaterials. However, the glass forming ability (GFA) of Ti-based MGs, particularly those bearing no toxic, noble, or heavy metals, that is, Be, Pd, or Cu alike, largely sets back their wide applications for the restricted critical glass forming size of these Ti-based MGs. In this review, the outlines in developing Ti-based MGs are delineated in order to provide an overall view on the efforts ever made to fabricate bulk size Ti-based MGs. The state of the art in the knowledge on the GFA of Ti-based MGs is briefly introduced, and possible directions for fabricating bulk size toxic and noble element free Ti-based MGs are discussed.


2012 ◽  
Vol 12 (2) ◽  
pp. 49-54 ◽  
Author(s):  
P. Lichý ◽  
M. Cagala

Microstructure and Thermomechanical Properties of Magnesium Alloys Castings Magnesium alloys thanks to their high specific strength have an extensive potential of the use in a number of industrial applications. The most important of them is the automobile industry in particular. Here it is possible to use this group of materials for great numbers of parts from elements in the car interior (steering wheels, seats, etc.), through exterior parts (wheels particularly of sporting models), up to driving (engine blocks) and gearbox mechanisms themselves. But the use of these alloys in the engine structure has its limitations as these parts are highly thermally stressed. But the commonly used magnesium alloys show rather fast decrease of strength properties with growing temperature of stressing them. This work is aimed at studying this properties both of alloys commonly used (of the Mg-Al-Zn, Mn type), and of that ones used in industrial manufacture in a limited extent (Mg-Al-Sr). These thermomechanical properties are further on complemented with the microstructure analysis with the aim of checking the metallurgical interventions (an effect of inoculation). From the studied materials the test castings were made from which the test bars for the tensile test were subsequently prepared. This test took place within the temperature range of 20°C - 300°C. Achieved results are summarized in the concluding part of the contribution.


2011 ◽  
Vol 378-379 ◽  
pp. 727-730
Author(s):  
Joon Sik Park ◽  
Jeong Min Kim ◽  
Young Ho Song ◽  
Byung Hwan-Hong ◽  
Ye Won Cho ◽  
...  

The nature of high specific strength compared with other structural materials has led to wide application of Mg alloys. However, Mg alloys often exhibit relatively low strength and/or low surface stability, which can limit the practical application of the alloy system. In order to achieve high strength, the commercial AZ61 alloys were extruded, so that the application of the alloy system can be extended towards new structural parts for requiring the light nature of the alloy system. In this study, a high temperature extrusion has been carried out for the commercial Mg alloys (AZ61). The productivity and mechanical properties of the alloy were critically affected by the extrusion conditions such as temperature, extrusion ratio and extrusion speed. The texture development and alloy strengths with respect to the extrusion conditions have been discussed in terms of microstructural observations and phase analyses.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1136 ◽  
Author(s):  
Yuefei Jia ◽  
Yandong Jia ◽  
Shiwei Wu ◽  
Xindi Ma ◽  
Gang Wang

To explore a novel high strength and low modulus ultralight-weight complex concentrated alloys (ULW-CCAs), a series of light alloys are designed and explored based on some low-density and low modulus elements, such as Al, Li, Mg, Ca, Si, and Y. An Al19.9Li30Mg35Si10Ca5Y0.1 (at %) CCA with a high specific strength of 327 KPa·m−3 is successfully developed. After adjusting the composition, the Al15Li35Mg48Ca1Si1 CCA with the good compressive plasticity is successfully developed. The Al15Li38Mg45Ca0.5Si1.5 and Al15Li39Mg45Ca0.5Si0.5 CCAs exhibit good plasticity of >45%, and >60%, respectively. These ULW-CCAs show the high specific strength, good ductility, and low Young’s modulus, as compared with the previously reported CCAs.


2014 ◽  
Vol 622-623 ◽  
pp. 840-845 ◽  
Author(s):  
Taher El-Bitar ◽  
Eman El-Shenawy ◽  
Maha El-Meligy

The proposed Ferrite-Bainite Dual Phase (FBDP) steel is suitable for automotive industries. The steel satisfies high specific strength (strength/weight ratio), which is positively reflected on both fuel consumption and crashing resistance.


Sign in / Sign up

Export Citation Format

Share Document