Preparation of Strongly Hydrophobic Film with Large Area and Flexibility Based on Micro Fabrication

2015 ◽  
Vol 645-646 ◽  
pp. 195-200
Author(s):  
Yi Bo Zeng ◽  
Ting Ting Wang ◽  
Jian Yan Wang ◽  
Hang Guo

In order to gain strongly hydrophobic film with large area and flexibility conveniently and effectively, how to prepare film with combination of technologies including micro fabrication, chemical grafting and micro molding is discussed. Firstly, micro channel arrays that the width is 5μm on the silicon wafer are prepared by micro fabrication. Then after spraying PVDF (Polyvinylidene Fluoride) lotion and pouring PDMS (Polydimethylsiloxane) glue solution onto the silicon wafer as the mould successively, the mixture need to be precured, which constructs rough structures in micro and nanoscale on the low surface energy film. Finally chemical grafting for film is carried out under the condition of O2 and 130°C so that the modification layer easy to adhesive on the boundary between PVDF and PDMS can be formed. Through the above technical routes, the strongly hydrophobic film that the general contact angle exceeds above 145o, the area is 180mm×64mm, the thickness is 0.9mm and the composite layer is firmly combined is gained. Compared to other hydrophobic materials the film is available in large area and has an advantage of flexibility. Meanwhile, the way that the film prepared by micro molding and in virtue of the silicon wafer with micro channel arrays as the mould contributes to large scale production.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peipei Du ◽  
Jinghui Li ◽  
Liang Wang ◽  
Liang Sun ◽  
Xi Wang ◽  
...  

AbstractWith rapid advances of perovskite light-emitting diodes (PeLEDs), the large-scale fabrication of patterned PeLEDs towards display panels is of increasing importance. However, most state-of-the-art PeLEDs are fabricated by solution-processed techniques, which are difficult to simultaneously achieve high-resolution pixels and large-scale production. To this end, we construct efficient CsPbBr3 PeLEDs employing a vacuum deposition technique, which has been demonstrated as the most successful route for commercial organic LED displays. By carefully controlling the strength of the spatial confinement in CsPbBr3 film, its radiative recombination is greatly enhanced while the nonradiative recombination is suppressed. As a result, the external quantum efficiency (EQE) of thermally evaporated PeLED reaches 8.0%, a record for vacuum processed PeLEDs. Benefitting from the excellent uniformity and scalability of the thermal evaporation, we demonstrate PeLED with a functional area up to 40.2 cm2 and a peak EQE of 7.1%, representing one of the most efficient large-area PeLEDs. We further achieve high-resolution patterned perovskite film with 100 μm pixels using fine metal masks, laying the foundation for potential display applications. We believe the strategy of confinement strength regulation in thermally evaporated perovskites provides an effective way to process high-efficiency and large-area PeLEDs towards commercial display panels.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1860
Author(s):  
Won Seok Seo ◽  
Dae Ki Kim ◽  
Ji-Hoon Han ◽  
Kang-Bak Park ◽  
Su Chak Ryu ◽  
...  

Monolayer and multilayer molybdenum disulfide (MoS2) materials are semiconductors with direct/indirect bandgaps of 1.2–1.8 eV and are attractive due to their changes in response to electrical, physicochemical, biological, and mechanical factors. Since the desired electrical properties of MoS2 are known, research on its electrical properties has increased, with focus on the deposition and growth of large-area MoS2 and its functionalization. While research on the large-scale production of MoS2 is actively underway, there is a lack of studies on functionalization approaches, which are essential since functional groups can help to dissolve particles or provide adequate reactivity. Strategies for producing films of functionalized MoS2 are rare, and what methods do exist are either complex or inefficient. This work introduces an efficient way to functionalize MoS2. Functional groups are formed on the surface by exposing MoS2 with surface sulfur vacancies generated by plasma treatment to 3-mercaptopropionic acid. This technique can create 1.8 times as many carboxyl groups on the MoS2 surface compared with previously reported strategies. The MoS2-based gas sensor fabricated using the proposed method shows a 2.6 times higher sensitivity and much lower detection limit than the untreated device.


1994 ◽  
Vol 116 (1) ◽  
pp. 25-27
Author(s):  
C. Fredric ◽  
D. Tarrant ◽  
C. Jensen ◽  
J. Hummel ◽  
J. Ermer

Recent advances in the efficiency and manufacturing technology of CuInSe2 (CIS) thin films demonstrate the opportunity for low-cost large-scale production of photovoltaics for utility applications. Large area (0.4 m2) submodules with 9.7 percent aperture efficiencies yielding 37.8 watts have been fabricated. Thin film fabrication techniques used in the production of modules enable reduced production costs compared with those for single crystal silicon. The performance of 0.4 m2 modules is projected to exceed 50 watts, based on performance achieved to date on 0.1 m2 modules and small area test devices. Preliminary tests packaged (encapsulated and framed) modules show no significant losses after 15 1/2 months of continuous outdoor exposure. Fabrication of 0.4 m2 modules to demonstrate the feasibility of large-scale commercialization of CIS thin film photovoltaics for utility applications is currently under way.


2002 ◽  
Vol 715 ◽  
Author(s):  
Wim Soppe ◽  
Camile Devilee ◽  
Sacha Schiermeier ◽  
Harry Donker ◽  
J.K. Rath

AbstractThe deposition of micro-crystalline silicon by means of PECVD with a new linear microwave plasma source is investigated. This plasma source has successfully been introduced in the large scale production of multi-crystalline Si solar cells for the deposition of passivating silicon nitride layers. Advantages of this linear plasma source are the high deposition rates and the large area (up to 80 cm width, no length limitations) on which a homogeneous deposition can be achieved. Since this source has not been applied for deposition of micro-crystalline silicon before, we explored a large parameter space (substrate temperature, pressure, MW-power, gas flow rates), in order to find optimum growth conditions. It is observed that with this microwave source it is possible to grow micro-crystalline layers at significantly higher silane/hydrogen ratios and higher deposition rates than for conventional RF PECVD. In this paper, structural properties of the silicon layers, as investigated by Raman and FTIR spectroscopy, XRD and SEM measurements are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yuan Xu ◽  
Xiao Li ◽  
Hong-Fei Xiang ◽  
Qian-Qian Zhang ◽  
Xiao-Xiong Wang ◽  
...  

There are still some challenges for mass-scale production via electrospinning (e-spinning). For example, the cost of industrialized equipment is relatively expensive, and the subsequent maintenance costs are high. The reliability and stability of the production process are also one of the important challenges. The recycling of organic solvents and the volatilization of solvents not only affect the quality of nanofibers, but also causes environmental pollution. In this work, a new multineedle e-spinning device has been proposed for large-scale production of polymer nanofibers. The spinning solution is provided through the outside surface of the needle to avoid needle clogging problem, which is different from the traditional multineedle e-spinning. The successful preparation of thermoplastic polyurethane (TPU) nanofiber membrane with production rate ~50 g h-1 proves the feasibility of the device, which also can be used to prepare other functional nanofibers such as polyvinylidene fluoride (PVDF) and polyacrylonitrile (PAN). The prepared TPU nanofiber gauze has been characterized. The average fiber diameter was 145.3 nm. The surface of the sample was found to be uniform, and the water contact angle was 138.9°. The sample had gas permeability of 1500 mm s-1, excellent PM2.5 removal efficiency of 99.897%, and optical transparency of ~56%, indicating that the new device has a practical application perspective.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Woocheol Lee ◽  
Jonghoon Lee ◽  
Hyeon-Dong Lee ◽  
Junwoo Kim ◽  
Heebeom Ahn ◽  
...  

Abstract Conventional solution-processing techniques such as the spin-coating method have been used successfully to reveal excellent properties of organic–inorganic halide perovskites (OHPs) for optoelectronic devices such as solar cell and light-emitting diode, but it is essential to explore other deposition techniques compatible with large-scale production. Single-source flash evaporation technique, in which a single source of materials of interest is rapidly heated to be deposited in a few seconds, is one of the candidate techniques for large-scale thin film deposition of OHPs. In this work, we investigated the reliability and controllability of the single-source flash evaporation technique for methylammonium lead iodide (MAPbI3) perovskite. In-depth statistical analysis was employed to demonstrate that the MAPbI3 films prepared via the flash evaporation have an ultrasmooth surface and uniform thickness throughout the 4-inch wafer scale. We also show that the thickness and grain size of the MAPbI3 film can be controlled by adjusting the amount of the source and number of deposition steps. Finally, the excellent large-area uniformity of the physical properties of the deposited thin films can be transferred to the uniformity in the device performance of MAPbI3 photodetectors prepared by flash evaporation which exhibited the responsivity of 0.2 A/W and detectivity of 3.82 × 1011 Jones.


Author(s):  
Peng Lv ◽  
Xiaoshi Li ◽  
Zihan Zhang ◽  
Biao Nie ◽  
Yiliang Wu ◽  
...  

Abstract Graphene exhibits a variety of unprecedented innate properties and has sparked great interest in both fundamental science and regarding prospective commercial applications. To meet the ever-increasing demand for high-quality graphene sheets, an industrial-scale, reliable, environmental-friendly, low-cost production process is required. However, large-scale production high quality graphene remains elusive. Here we demonstrate a scalable mechanical cleavage method for large-quantity production of high quality large-area and few-layer graphene sheets by introducing a millstone grinding process. The average thickness of the graphene sheets is around 5 nm. This procedure is simpler than the state-of-the-art methods that allows for scalable preparation of graphene dispersion in hundreds of litres by mechanical cleavage of graphite, and the yield is 30-40%. The size of the prepared graphene sheets can be tuneable from few micrometres to tens of micrometres by varying the dimension of raw graphite, which is larger than that produced by the state-of-the-art methods. Moreover, comparing to conductive agents, the conductivity of wafers containing graphene can be increased by one order of magnitude, suggesting a high potential of the prepared graphene sheets for the application as conductive agent in lithium battery cathodes. This allows the requirements of different sizes graphene sheets for industry applications in different fields.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Yuan Xu ◽  
Jian-Wei Zhu ◽  
Jun-Bo Fang ◽  
Xiao Li ◽  
Miao Yu ◽  
...  

Separators are key materials to ensure the safety of lithium-ion batteries and improve their performance. Currently, commercial lithium-ion battery separators are mainly polyolefin organic diaphragms, but their temperature instability leads to battery short circuit and fire risk. A flexible SiO2 nanofiber membrane combined with a poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) nanofiber membrane is prepared by an electrospinning method. The mechanical strength of the SiO2/PVDF-HFP composite nanofiber membrane (SPF) is twice as high as the pure SiO2 nanofiber membrane and at 200°C, there are almost no dimensional changes of the SPF separators. Compared to commercial polyethylene (PE) separators, SPF shows excellent thermal stability and large-area closed cells at 180°C when used in lithium-ion battery separators. The porosity of SPF is 89.7%, which is more than twice than that of an ordinary PE separator. The liquid absorption rate of SPF is much higher than an ordinary PE separator and has reached 483%. Furthermore, the cycle and rate performance of lithium-ion batteries prepared by SPF has been improved significantly. These excellent properties, as well as the potential for large-scale production of electrospinning technology, make SPF an ideal choice for high-power battery separators.


2014 ◽  
Vol 34 (4) ◽  
pp. 279-338 ◽  
Author(s):  
Shamim Ahmad

Abstract With the rich experience of developing silicon devices over a period of the last six decades, it is easy to assess the suitability of a new material for device applications by examining charge carrier injection, transport, and extraction across a practically realizable architecture; surface passivation; and packaging and reliability issues besides the feasibility of preparing mechanically robust wafer/substrate of single-crystal or polycrystalline/amorphous thin films. For material preparation, parameters such as purification of constituent materials, crystal growth, and thin-film deposition with minimum defects/disorders are equally important. Further, it is relevant to know whether conventional semiconductor processes, already known, would be useable directly or would require completely new technologies. Having found a likely candidate after such a screening, it would be necessary to identify a specific area of application against an existing list of materials available with special reference to cost reduction considerations in large-scale production. Various families of organic semiconductors are reviewed here, especially with the objective of using them in niche areas of large-area electronic displays, flexible organic electronics, and organic photovoltaic solar cells. While doing so, it appears feasible to improve mobility and stability by adjusting π-conjugation and modifying the energy band-gap. Higher conductivity nanocomposites, formed by blending with chemically conjugated C-allotropes and metal nanoparticles, open exciting methods of designing flexible contact/interconnects for organic and flexible electronics as can be seen from the discussion included here.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Joondong Kim

Carbon nanotube (CNT) is a promising one-dimensional nanostructure for various nanoscale electronics. Additionally, nanostructures would provide a significant large surface area at a fixed volume, which is an advantage for high-responsive gas sensors. However, the difficulty in fabrication processes limits the CNT gas sensors for the large-scale production. We review the viable scheme for large-area application including the CNT gas sensor fabrication and reaction mechanism with a practical demonstration.


Sign in / Sign up

Export Citation Format

Share Document