The Buckling Simulation of Planar W-Form Micro-Spring in MEMS Safety and Arming Device

2015 ◽  
Vol 645-646 ◽  
pp. 796-799
Author(s):  
Fu Fu Wang ◽  
Wen Zhong Lou ◽  
Fang Yi Liu ◽  
Da Kui Wang ◽  
Jun Lu ◽  
...  

This paper describes the stability research of MEMS spring used in fuze. The micro-spring in thickness dimension is thin, while the size of axial direction is larger, during compression the micro-spring is prone to suffering buckling and become unstable. In order to consider the extreme environments in launch, this paper aims to carry out buckling simulation in high or low temperature, by using FEM analysis. The effect of temperature load on the micro-spring buckling can be obtained. These researches can provide theory reference for the design applications and reliability analysis of micro-spring, and also lay the foundation for the response characteristics of the micro-scale elastic components under compressive force.

2019 ◽  
Vol 26 (5) ◽  
pp. 339-347 ◽  
Author(s):  
Dilani G. Gamage ◽  
Ajith Gunaratne ◽  
Gopal R. Periyannan ◽  
Timothy G. Russell

Background: The dipeptide composition-based Instability Index (II) is one of the protein primary structure-dependent methods available for in vivo protein stability predictions. As per this method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles guided the original development of the II method. However, the use of the II method for in vitro protein stability predictions raises questions about the validity of applying the II method under experimental conditions that are different from the in vivo setting. Objective: The aim of this study is to experimentally test the validity of the use of II as an in vitro protein stability predictor. Methods: A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent degradation properties of CCM by generating CCM mutants to represent stable and unstable II values. A comparative degradation analysis was carried out under in vitro conditions using wildtype CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1- casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions. The effect of temperature and a protein stabilizing agent on CCM degradation was also tested. Results: Data support the dipeptide composition-dependent protein stability/instability in wt-CCM and mutants as predicted by the II method under in vitro conditions. However, the II failed to accurately represent the stability of other tested proteins. Data indicate the influence of protein environmental factors on the autoproteolysis of proteins. Conclusion: Broader application of the II method for the prediction of protein stability under in vitro conditions is questionable as the stability of the protein may be dependent not only on the intrinsic nature of the protein but also on the conditions of the protein milieu.


Author(s):  
Olusola Akinbami ◽  
Grace N Ngubeni ◽  
Francis Otieno ◽  
Rudo Kadzutu-Sithole ◽  
Cebisa Linganiso ◽  
...  

2D hybrid perovskites are promising materials for solar cell applications, in particular, cesium based perovskite nanocrystals as they offer the stability that is absent in organic-inorganic perovskite. However, the most...


1974 ◽  
Vol 96 (1) ◽  
pp. 28-35 ◽  
Author(s):  
R. C. DiPrima ◽  
J. T. Stuart

At sufficiently high operating speeds in lightly loaded journal bearings the basic laminar flow will be unstable. The instability leads to a new steady secondary motion of ring vortices around the cylinders with a regular periodicity in the axial direction and a strength that depends on the azimuthial position (Taylor vortices). Very recently published work on the basic flow and the stability of the basic flow between eccentric circular cylinders with the inner cylinder rotating is summarized so as to provide a unified description. A procedure for calculating the Taylor-vortex flow is developed, a comparison with observed properties of the flow field is made, and formulas for the load and torque are given.


2013 ◽  
Vol 562-565 ◽  
pp. 1008-1015 ◽  
Author(s):  
Shu Tao Wang ◽  
Peng Wei Zhang ◽  
Quan Min Zhu

Based on DFBLD (Distributed Feedback Laser Diode) and harmonic detection technique, a novel fiber-optic methane detection system is constructed. The system can be applied to broad-range concentration detection of methane. Based on the approximation express of the law of Beer-Lambert, detection of methane with various concentration from 0% to 20% is completed using subtraction of background and ratio processing method, as the atmosphere surroundings are treated as background noise. The direct absorption spectra for various concentration is measured using GRIN gas cell, combined with DFBLD. The R5 line of the 2v3 band of methane is selected as the absorption peak. The system is tested online during gas mixing process and the linear relationship between system indication and concentration variation is validated. Also the stability and dynamic response characteristics are confirmed by the experiments. The sensitivity of the system can be adjusted according to the concentration level of various field environments by changing the prism distance using step motor. In the range of 0% to 20% the sensitivity of methane detection can arrive at 0.001%. So the system can be applied to various application fields and adopted as monitoring instruments for coalmine tunnel and natural pipeline.


2007 ◽  
Vol 280-283 ◽  
pp. 185-188 ◽  
Author(s):  
Jing Zhou ◽  
Wen Chen ◽  
Hua Jun Sun ◽  
Qing Xu

The electron structure of Pb(Zr1/2Ti1/2)O3(PZT), Pb(Zn1/3Nb2/3)O3(PZN) and Pb(Mn1/3Sb2/3)O3 (PMS) systems was calculated by the SCF-DV-Xα calculation method. The effects of ABO3-type perovskite and pyrochlore ceramic electron structure on their piezoelectricity were also studied. The results showed that the ferroelectric phase is more stable than paraelectric phase and the necessary condition of stable existing ferroelectric is the mixed orbit of O2p orbit and the out layer d orbit of B-site atom. The stability of ferroelectricity can be indicated by the strength of mixed orbit. When (Zr, Ti) was substituted by Mn1/3Sb2/3, Zn1/3Nb2/3, if it could form tetragonal perovskite structure, the total system energy would reduce and the mixed orbit will enhance, which improves the ferroelectricity of PZT system. However, if it forms a cubic pyrochlore structure, the ferroelectricity would lose because the covalent bond strength of B-O (axial direction) and B-O (vertical axial direction) is different obviously, which lead to the system structure become unstable.


Author(s):  
Frantisek L. Eisinger ◽  
Robert E. Sullivan

Six burner/furnace systems which operated successfully without vibration are evaluated for resistance to thermoacoustic oscillations. The evaluation is based on the Rijke and Sondhauss models representing the combined burner/furnace (cold/hot) thermoacoustic systems. Frequency differences between the lowest vulnerable furnace acoustic frequencies in the burner axial direction and those of the systems’ Rijke and Sondhauss frequencies are evaluated to check for resonances. Most importantly, the stability of the Rijke and Sondhauss models is checked against the published design stability diagram of Eisinger [1] and Eisinger and Sullivan [2]. It is shown that the resistance to thermoacoustic oscillations is adequately defined by the published design stability diagram to which the evaluated cases generally adhere. Once the system falls into the stable range, the frequency differences or resonances appear to play only a secondary role. It is concluded, however, that in conjunction with stability, the primary criterion, sufficient frequency separations shall also be maintained in the design process to preclude resonances. The paper provides sufficient details to aid the design engineers.


Author(s):  
M. Gotoh ◽  
Y. Shibata

Abstract Uni-lateral and bi-lateral elastic-plastic compressions of a circular cylinder with three different wall thicknesses by flat plates are numerically analysed by the Finite Element Method (FEM). J2-flow theory (J2F), and J2-Gotoh’s corner theory (J2G) which was previously proposed by one of the authors are used as the constitutive equations. In the case of uni-lateral compression, the cylinder is compressed up to a completely flattened shape, which is considered a kind of plastic forming processes. The deformed shapes and the compressive force are predicted better by J2G than by J2F. The spring-back behaviours are also analysed by imposing unloading process during deformation. The deformation process in the compression of a ring (plane stress state) and a spherical shell (axi-symmetric state) is also analysed. In the case of bi-lateral compression, the process is considered a kind of square-tube forming. In its final stage, the cylinder deforms into a completely unexpected shape which could be thought of as a square tube reinforced with ribs. The J2G allows the process to proceed at a lower compressive force than that for J2F. The effect of n-value (the strain-hardedning exponent) on the deformation pattern is also discussed.


Author(s):  
Ebrahim Esmailzadeh ◽  
Gholamreza Nakhaie-Jazar ◽  
Bahman Mehri

Abstract The transverse vibrating motion of a simple beam with one end fixed while driven harmonically along its axial direction from the other end is investigated. For a special case of zero value for the rigidity of the beam, the system reduces to that of a vibrating string with the corresponding equation of its motion. The sufficient condition for the periodic solution of the beam is then derived by means of the Green’s function and Schauder’s fixed point theorem. The criteria for the stability of the system is well defined and the condition for which the performance of the beam behaves as a nonlinear function is stated.


2017 ◽  
Vol 890 ◽  
pp. 82-85 ◽  
Author(s):  
Reymark D. Maalihan ◽  
Bryan B. Pajarito

This work reports the effect of temperature on degradation of colored low-density polyethylene (PE) films during thermal aging. Film samples were formulated according to Taguchi design of experiments where colorant, thickness, and pro-oxidant concentration were varied accordingly. Tensile properties of films were monitored with time during heat aging in a hot air oven at 50, 70, and 90 °C. Likewise, surfaces of aged films were analyzed to evaluate the degree of oxidation of PE during thermal aging. The Arrhenius equation was then used to predict the lifetime of PE at an in-use temperature of 30 °C. Results indicate that increasing the temperature reduces the tensile strength and modulus of films. Formation of carbonyl groups as degradation products is also observed at higher temperatures. Consequently, thermal aging at 90 °C offers the highest extent of degradation of exposed films. Regression analysis reveals that white films degrade at a higher rate than yellow and non-colored films. The presence of TiO2 in white films shortens the lifetime of PE while amine stabilizer in yellow films enhances the stability of PE during thermal aging.


Sign in / Sign up

Export Citation Format

Share Document