Removal of Iron and Total Chromium Contaminations in Landfill Leachate by Using Electrocoagulation Process

2015 ◽  
Vol 660 ◽  
pp. 279-283 ◽  
Author(s):  
Mohd Khairul Nizam Mahmad ◽  
M.A.Z. Mohd Remy Rozainy ◽  
Ismail Abustan ◽  
Norlia Baharun

This research work involves the study removal of Iron and Total Chromium by electrocoagulation process. This project focused on leachate landfill from Pulau Burung, Nibong Tebal, Penang as an electrolyte solution. These heavy metals are the main factor contributing to pollution in leachate landfill. Types of electrodes used in this study were Aluminium (grade 5052) and Stainless Steel (grade 316). The ranges of initial pH applied were pH (3, 4, 5, 6 and 7) and voltages applied were 1.5V, 2.0V and 2.5V. These three parameters were evaluated and the operation time was 60 minutes. At the end of electrocoagulation process, the solutions were stored and analysed using AAS to determine the final concentration of electrolyte solution.

2016 ◽  
Vol 857 ◽  
pp. 519-523 ◽  
Author(s):  
Mohamad Fared Murshed ◽  
Mohd Khairul Nizam Mahmad ◽  
M.A.Z. Mohd Remy Rozainy ◽  
Ismail Abustan ◽  
Norlia Baharun

The research works involve the study of removal of cadmium and zinc contaminations in landfill leachate by electrocoagulation process. This project focused on leachate landfill from Pulau Burung, Nibong Tebal, Penang as an electrolyte solution. Heavy metals are the main factor contributing to pollution in leachate landfill. Types of electrodes used in this study were aluminium (grade 5052) and Stainless Steel (grade 316). The ranges of initial pH applied were pH (3, 4, 5, 6 and 7) and voltages applied were 1.5V, 2.0V and 2.5V. At the end of electrocoagulation process, the solutions were stored and analysed usingatomic absorption spectroscopy (AAS) to determine the final concentration of electrolyte solution. It was found difference electrodes have difference effectiveness in removing heavy metals, relies on the types of electrodes (aluminium or stainless steel) and also types of heavy metals that were being treated. The initial pH also gives the significant effect to removal of heavy metal and the maximum voltages give higher removal of heavy metal. Removal of cadmium and zinc by stainless steel electrode was more effective than aluminium electrodes at voltage of 2.5V. The removal using stainless steel was 22.45% and 97.54% respectively. For removal using aluminium electrodes 18.37% and 92.12% respectively. It was found that the maximum voltages give higher removal of heavy metal for all removal of cadmium and zinc. The removal maximum when the applied voltage was 2.5V and minimum at 1.5V.


2021 ◽  
Vol 5 (1) ◽  
pp. 29
Author(s):  
Freddy Waldir Gómez Escobedo ◽  
Jorge Edinson Gómez Escobedo ◽  
Erick Alexander Choton Cipriano ◽  
Dagner Marvin Castañeda Hilario ◽  
César Pol Arévalo Aranda ◽  
...  

The present research work had as study variables the current density of 20, 40 and 80 mA/cm2 and residence times of 10, 20, 40 and 60 minutes, within these evaluation parameters values were taken of pH, conductivity and Fe2+ removal percentage before and after the electrocoagulation process of artisanal acid mine drainage samples (AMD), the amount of AMD sample per test was 350 mL per test, from the results obtained it could be observed that For the current density of 80 mA/cm2 and a time of 40 minutes, the highest percentage of removal was obtained (76.20%), likewise a minimum percentage of removal of 17.97% was obtained at 20 mA/cm2; The removal percentages are attributed to the effect of the current density of the electrocoagulation process, which allows increasing the initial pH values of the effluent, which in turn allows the formation of precipitates and co-precipitates, in this case of Fe2+.


Author(s):  
Mahmud Mohammed Imam ◽  
Zahra Muhammad ◽  
Amina Zakari

In this research work the concentration of zinc, copper, lead, chromium, cadmium, and nickel in cow milk samples obtained from four different grazing areas   (kakuri, kudendan, malali, kawo) of Kaduna metropolis. The samples were digested by wet digestion technique .The trace element were determined using bulk scientific model VPG 210 model  Atomic Absorption Spectrophotometer (AAS).. The concentration of the determined heavy metal were The result revealed that Cr,  Ni and Cd were not detected in milk samples from Kawo, Malali  and Kudendan whereas lead (Pb) is detected in all samples and found to be above  the stipulated limits of recommended dietary allowance (NRC,1989) given as 0.02mg/day. Cu and Zn are essential elements needed by the body for proper metabolism and as such their deficiency or excess is very dangerous for human health. However, they were found in all samples and are within the recommended limits while Cd (2.13 – 3.15 mg/kg) in milk samples from Kakuri was found to be above such limit (0.5mg/day). Cow milk samples analyzed for heavy metals in this research work pose a threat of lead and cadmium toxicity due to their exposure to direct sources of air, water and plants in these grazing areas, thereby, resulting to a potential health risk to the consumers.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 335-341 ◽  
Author(s):  
Jae-Kyu Yang ◽  
Yoon-Young Chang ◽  
Sung-Il Lee ◽  
Hyung-Jin Choi ◽  
Seung-Mok Lee

Iron-coated sand (ICS) prepared by using FeCl3 and Joomoonjin sand widely used in Korea was used in this study. In batch adsorption kinetics, As(V) adsorption onto ICS was completed within 20 minutes, while adsorption of Pb(II), Cd(II), and Cu(II) onto ICS was slower than that of As(V) and strongly depended on initial pH. At pH 3.5, ICS showed a selective adsorption of Pb(II) compared to Cd( II) and Cu(II) . However, above pH 4.5, near complete removal of Pb(II), Cd(II), and Cu(II) was observed through adsorption or precipitation depending on pH. As(V) adsorption onto ICS occurred through an anionic-type and followed a Langmuir-type adsorption behaviour. In column experiments, pH was identified as an important parameter in the breakthrough of As(V). As(V) breakthrough at pH 4.5 was much slower than at pH 9 due to a strong chemical bonding between As(V) and ICS as similar with batch adsorption behaviour. With variation of ICS amounts, the optimum amount of ICS at pH 4.5 was identified as 5.0 grams in this research. At this condition, ICS could be used to treat 200 mg of As(V) with 1 kg of ICS until 50 ppb of As(V) appeared in the effluent. In this research, as a new treatment system, ICS can be potentially used to treat As(V) and cationic heavy metals.


2020 ◽  
Vol 22 (35) ◽  
pp. 20123-20142
Author(s):  
Hadi Saboorian-Jooybari ◽  
Zhangxin Chen

This research work is directed at development of accurate physics-based formulas for quantification of curvature-dependence of surface potential, surface charge density, and total surface charge for cylindrical and spherical charged particles immersed in a symmetrical electrolyte solution.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
M. Behbahani ◽  
M.R. Alavi Moghaddam ◽  
M. Arami

The aim of this study is to examine the effect of operational parameters on fluoride removal using electrocoagulation method. For this purpose, various operational parameters including initial pH, initial fluoride concentration, applied current, reaction time, electrode connection mode, anode material, electrolyte salt, electrolyte concentration, number of electrodes and interelectrode distance were investigated. The highest defluoridation efficiency achieved at initial pH 6. In the case of initial fluoride concentration, maximum removal efficiency (98.5%) obtained at concentration of 25mg/l. The increase of applied current and reaction time improved defluoridation efficiency up to 99%. The difference of fluoride removal efficiencies between monopolar and bipolar series and monopolar parallel were significant, especially at reaction time of 5 min. When aluminum used as anode material, higher removal efficiency (98.5%) achieved compared to that of iron anode (67.7%). The best electrolyte salt was NaCl with the maximum defluoridation efficiency of 98.5% compared to KNO3 and Na2SO4. The increase of NaCl had no effect on defluoridation efficiency. Number of electrodes had little effect on the amounts of Al3+ ions released in the solution and as a result defluoridation efficiency. Almost the same fluoride removal efficiency obtained for different interelectrode distances.


2016 ◽  
Vol 19 ◽  
pp. 681-686 ◽  
Author(s):  
Mohd Khairul Nizam Mahmad ◽  
M.A.Z. Mohd Remy Rozainy ◽  
Ismail Abustan ◽  
Norlia Baharun

2021 ◽  
Vol 10 (3) ◽  
pp. 415-424
Author(s):  
Aji Prasetyaningrum ◽  
Dessy Ariyanti ◽  
Widayat Widayat ◽  
Bakti Jos

Electroplating wastewater contains high amount of heavy metals that can cause serious problems to humans and the environment. Therefore, it is necessary to remove heavy metals from electroplating wastewater. The aim of this research was to examine the electrocoagulation (EC) process for removing the copper (Cu) and lead (Pb) ions from wastewater using aluminum electrodes. It also analyzes the removal efficiency and energy requirement rate of the EC method for heavy metals removal from wastewater. Regarding this matter, the operational parameters of the EC process were varied, including time (20−40 min), current density (40−80 A/m2), pH (3−11), and initial concentration of heavy metals. The concentration of heavy metals ions was analyzed using the atomic absorption spectroscopy (AAS) method. The results showed that the concentration of lead and copper ions decreased with the increase in EC time. The current density was observed as a notable parameter. High current density has an effect on increasing energy consumption. On the other hand, the performance of the electrocoagulation process decreased at low pH. The higher initial concentration of heavy metals resulted in higher removal efficiency than the lower concentration. The removal efficiency of copper and lead ions was 89.88% and 98.76%, respectively, at 40 min with electrocoagulation treatment of 80 A/m2 current density and pH 9. At this condition, the specific amounts of dissolved electrodes were 0.2201 kg/m3, and the energy consumption was 21.6 kWh/m3. The kinetic study showed that the removal of the ions follows the first-order model.


2021 ◽  
Vol 900 (1) ◽  
pp. 012003
Author(s):  
M Balintova ◽  
Z Kovacova ◽  
S Demcak ◽  
Y Chernysh ◽  
N Junakova

Abstract Removal of heavy metals from the environment is important for living beings. The present work investigates the applicability of the natural and MnO2 - coated zeolite as sorbent for the removal of copper from synthetic solutions. Batch experiments were carried out to identify the influence of initial pH and concentration in the process of adsorption. A maximum removal efficiency of Cu(II) was observed in 10 mg/L for natural (95.6%) and modified (96.4%) zeolite, where the values was almost identical, but at concentration of 500 mg/L was the removal efficiency of modified zeolite three times higher. Based on the correlation factors R2, the Langmuir isotherms better describe the decontamination process than Freundlich. The optimum pH value was set at 5.0.


2013 ◽  
Vol 68 (10) ◽  
pp. 2220-2227 ◽  
Author(s):  
Elif Senturk

This paper investigates the treatment of zinc-cyanide electroplating rinse water using an electrocoagulation process (ECP). The effects of operating parameters such as electrode material, current density (2.5–40 A/m2), operating time (0–60 min), initial pH (5–12) and electrode connection mode (monopolar parallel (MP-P), monopolar series and bipolar series) on the ECP were evaluated to find the optimum operating conditions. At 20 A/m2, 60 min, the highest removal efficiencies were obtained with 85 and 99% for Fe and 64 and 33% for Al electrodes, for cyanide and zinc, respectively. The optimum operating conditions were found to be 30 A/m2 and 40 min, for the Fe electrode at the original pH (9.5) of the rinse water. Considering efficiency and economy, the MP-P connection mode was determined as the optimum connection mode.


Sign in / Sign up

Export Citation Format

Share Document