Mechanical Properties and Corrosion Mechanism of GFRP Rebar in Alkaline Solution

2015 ◽  
Vol 665 ◽  
pp. 217-220
Author(s):  
Ji Ze Mao ◽  
Hong Wei Zhang ◽  
Jian Fu Lv ◽  
Dao Guang Jia ◽  
Shi Kai Ao

Steel corrosion is one of the main problems of concrete structure durability. Compared with the steel, GFRP rebar has the advantages of high strength, low density and good corrosion resistance. Therefore, GFRP becomes a good choice to replace steel bar in concrete structure. Since GFRP material is susceptible to the alkaline conditions, it is necessary to clarify the mechanical properties and corrosion mechanism of GFRP rebar in such an alkaline environment of interior concrete. In this study, the artificial accelerated corrosion tests of two kinds of GFRP rebar (epoxy and unsaturated polyester resin matrix) were conducted at 60 °C in alkaline solution up to 90 days. Then the tensile strength tests of GFRP rebar were carried out. The solution PH values, the tensile strength and mass loss of GFRP rebar were measured. The testing results show that the mass of GFRP rebar had rarely changed, but the tensile strength reduced about 30% after 90-day immersion test in alkaline solution. During the test, the PH value of the alkaline solution decreased from 13.62 to around 12.85, which indicated that the hydroxyl ions of the alkaline solution had been consumed. The ester bonds in resin matrix may hydrolyze in alkaline solution and the bonding interface between fiber and resin can be damaged progressively. It can cause the performance degradation of GFRP rebar. In addition, the relationship between the loss of tensile strength and the reduction of PH can be determined. That means the durability of GFRP rebar in concrete can be enhanced by controlling or limiting the alkalinity when producing concrete. Finally, the GFRP rebar of epoxy resin matrix shows higher retention values of tensile strength and better alkali resistance than those of UPR matrix rebar after 90d immersion in the alkaline solution. The obtained results in this paper can provide application reference of GFRP materials in civil engineering.

2019 ◽  
Vol 15 (2) ◽  
pp. 62-70
Author(s):  
Stephen Durowaye ◽  
Olatunde Sekunowo ◽  
Catherine Kuforiji ◽  
Ganiyu Lawal ◽  
Jacob Okon

 Reinforcement of polymers with particles to enhance their mechanical properties for various applications cannot be over emphasized. Hence, the microstructure and mechanical behaviour of polyester resin matrix composites reinforced with pineapple leaf particles was studied in order to develop an engineering material for industrial applications. Pineapple leaf particles treated and untreated with NaOH were separately blended with unsaturated polyester resin. 1 g of catalyst and 0.5 g of accelerator were added to the mixture to achieve a homogeneous interfacial interaction. The composites were made by mould casting and their microstructure and mechanical properties were evaluated. The NaOH treated pineapple leaf particles reinforced composite exhibited the highest tensile strength of 98.73 MPa at 15 wt. % and impact energy of 20.73 J at 20 wt. %. Microstructure showed a fairly uniform distribution of the pineapple leaf particles in the polyester resin matrix coupled with the strong interfacial bonding of the filler and matrix as the major factors responsible for the enhancement of the tensile strength and impact energy of the composites.


2021 ◽  
pp. 51305
Author(s):  
Nora Abigail Wilson García ◽  
Jorge Luis Almaral Sánchez ◽  
Ramón Álvaro Vargas Ortiz ◽  
Abel Hurtado Macías ◽  
Nelly Flores Ramírez ◽  
...  

2013 ◽  
Vol 749 ◽  
pp. 407-413
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Ji Ping Ren ◽  
Min Peng ◽  
Shi Yang ◽  
...  

The mechanical properties and corrosion performances of the ZL101 alloy modified by the composite master alloy were investigated. The results showed that the master alloy had not only obvious effect of grain refinement, but also a significant role in refining dendrite grain of ZL101 alloy. The grain size decreased dramatically from 150μm to 62μm when the addition of composite master alloy is up to 0.5%(mass fraction) and the temperature is 720 for 30 minutes,. Its tensile strength and elongation increased by 27% and 42% respectively. The grain refinement of ZL101 alloy decreased its corrosion performance. The morphology of Si changed into globular from needle modified by NaF, instead of AlTiB.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
J. Sahari ◽  
M. A. Maleque

The mechanical properties of oil palm shell (OPS) composites were investigated with different volume fraction of OPS such as 0%, 10%, 20%, and 30% using unsaturated polyester (UPE) as a matrix. The results presented that the tensile strength and tensile modulus of the UPE/OPS composites increased as the OPS loading increased. The highest tensile modulus of UPE/OPS was obtained at 30 vol% of OPS with the value of 8.50 GPa. The tensile strength of the composites was 1.15, 1.17, and 1.18 times higher than the pure UPE matrix for 10, 20, and 30 vol% of OPS, respectively. The FTIR spectra showed the change of functional group of composites with different volume fractions of OPS. SEM analysis shows the filler pull-out present in the composites which proved the poor filler-matrix interfacial bonding.


2013 ◽  
Vol 465-466 ◽  
pp. 962-966 ◽  
Author(s):  
Mohd Pahmi bin Saiman ◽  
Mohd Saidin Bin Wahab ◽  
Mat Uzir Wahit

To produce a good quality of dry fabric for reinforced material in a natural-based polymer composite, yarn linear density should be in consideration. A woven kenaf dry fabric with three different linear densities of 276tex, 413.4tex and 759tex were produced. The fabrics with different linear densities were been optimize with the assistance of WiseTex software. The optimized dry fabrics were infused with unsaturated polyester to produce composite panel using vacuum infusion process. The composites properties were tested on the tensile strength, flexural strength and the impact strength. The result shows that the mechanical properties of the composite increased when the yarn linear densities increased.


2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Catur Pramono ◽  
Sri Widodo ◽  
Muhammad Galih Ardiyanto

Composite is a material consisting of two or more components which have characteristics mild and relatively strong. This study used bagasse fiber which is widely produced in sugar industry. Treatment of bagasse fiber by soaked in alkaline solution (NaOH) for 2 hours to remove the cork / wax attached to the fiber. Manufacture of composite by hand lay up. The matrix used in this study is epoxy. The fraction volume of composite between bagasse fiber and epoxy are 4%: 96%, 8%: 92% and 12%: 88%. The mechanical properties tested is tensile strength. The tensile test refers to ASTM D638 type 4. The highest tensile test composite resulted at the fraction volume composite of bagasse fiber with epoxy 12%: 88% i.e. 28.43 MPa.


2018 ◽  
Vol 21 (1) ◽  
pp. 147 ◽  
Author(s):  
Sihama I. Salih ◽  
Qahtan A. Hamad ◽  
Safaa N. Abdul Jabbar ◽  
Najat H. Sabit

This work covers mixing of unsaturated polyester (un- polyester) with starch powders as polymer blends and study the effects of irradiation by UV-acceleration on mechanical properties of its. The unsaturated polyester was mixing by starch powders at particle size less than (45 µm) at selected weight fraction of (0, 0.5, 1, 1.5, 2, 2.5 and 3%). These properties involve ultimate tensile strength, modulus of elasticity, elongation percentage, flexural modulus, flexural strength, fracture toughness, impact strength and hardness. The results illustrate decrease in the ultimate tensile strength at and elongation percentage, while increasing modulus of elasticity, with increasing the weight ratio of starch powder to 3 % weight fraction, whereas the maximum value of hardness and flexural, impact properties happened at 1 % weight fraction for types of polymer blends.


2008 ◽  
Vol 55-57 ◽  
pp. 389-392
Author(s):  
Supreyak Kumfu ◽  
Wim Nhuapeng ◽  
Wandee Thamjaree ◽  
Tawee Tunkasiri

Aramid/Al2O3/epoxy resin laminated composites were fabricated using ultrasonic mixing and casting technique. This novo material could be exhibited to the ideal mechanical properties such as high tensile strength, hardness, flexural strength and lightweight which may be used to replace metal parts in vehicles. Moreover, Al2O3 powder was mixed to epoxy resin to improve the scratch resistance. To improve the bending force and interaction between Al2O3 powder phase and epoxy resin phase, the ultrasonic mixing was used for fabricating these laminate composites. The physicals and mechanical properties such as density, hardness, impact test, wear resistance and tensile strength of the composites samples were investigated. It was found that the amounts of percent by volume of the Al2O3 have affected the properties of the laminated composites. Furthermore, microstructures of specimens were also investigated by scanning electron microscope (SEM). From the results, SEM images showed good distribution and adhesion between reinforced phase and epoxy resin matrix phase.


2014 ◽  
Vol 936 ◽  
pp. 1796-1800
Author(s):  
Peng Dang ◽  
Xiao Wei Zhang ◽  
Yun Wang ◽  
Qing Zhang ◽  
Chang Liang Li

The influence of annealing temperature on the microstructure, mechanical properties and corrosion resistant of cold rolling zirconium sheet were studied in the manuscript. The experimental results shown that the tensile strength and yield strength of zirconium sheet were decreased and the elongationwas raised with the raising of annealing temperature from 500 °C to 580 °C. The recrystallization are not happened in zirconium sheet at the annealing temperature of 500 °C. Zirconium sheet complete recrystallized and the strength and elongation get a well match at the annealing temperature of 540°C. Zirconium sheet also complete recrystallized at the annealing temperature of 580°C but the crystalline grain has the tendency of growing. The annealing temperature has no effect on the corrosion resistant of zirconium sheet.


2019 ◽  
Vol 27 (1(133)) ◽  
pp. 37-44
Author(s):  
Marcin Barburski ◽  
Mariusz Urbaniak ◽  
Sanjeeb Kumar Samal

In this article, the mechanical properties of biaxial and triaxial woven aramid fabric and respective reinforced composites were investigated. Both fabrics had the same mass/m2. The first part of the experimental investigation was focused on the mechanical properties of different non-laminated aramid fabrics (biaxial and triaxial). The second part was concerned with the mechanical properties of composites made of a different combination of layers of fabric reinforced with an epoxy resin matrix in the order of biaxial+biaxial, trixial+triaxial and biaxial+triaxial. The composites were tested for tensile strength, flexural strength, strain and Young’s and flexural modulus. It can be seen from the results that the density and direction of the yarns are the most important parameters for determination of the strength of the fabric reinforced composite. The biaxial composite clearly showed better tensile strength, while the bi-tri axial order showed good flexural strength compared to the other composite combinations. These fabric reinforced composites have suitable applications in the areas of medical, protection and in the automotive industries.


Sign in / Sign up

Export Citation Format

Share Document