Property Oriented Wire Rolling Technology for Mg-Al Alloys

2016 ◽  
Vol 684 ◽  
pp. 42-56 ◽  
Author(s):  
Joanna Dembińska ◽  
Marcel Graf ◽  
Madlen Ullmann ◽  
Kristina Neh ◽  
Birgit Awiszus ◽  
...  

Magnesium and magnesium alloys offer high potential as lightweight materials. Current works are mainly focused on the metal forming technologies and material development for sheet and strips to provide magnesium flat products for industrial applications. However, the technology for the production of magnesium long products for fasteners or other connecting elements is exclusive the extrusion process. A cost-efficient alternative can be the caliber rolling technology for magnesium rods and wire with regard to refined microstructure and specific required properties. But this whole process is rarely applied up to now and all material-specific as well as deformation relevant basics must be developed and additionally validated under industrial conditions. This paper gives the overview for a magnesium-specific wire rolling technology under consideration of chemical composition (AZ31, AZ61, AZ80) and their influence to final mechanical properties in correlation with the microstructure evolution along the whole process line. Therefore, the process-and material-dependent microstructural evolution during rolling process was investigated. The structural constitution is detailed by the grain size and the precipitation conditions. For the determination of the mechanical properties hardness measurement as well as tensile testing was carried out. To preliminary design and determine the material flow, the temperature distribution, and the logarithmic strain, a commercial numerical simulation tool was applied on base of the implemented material-specific deformation and recrystallization behavior. Hence, it was possible to design a magnesium specific caliber sequence for the production of fine-grained magnesium wires with Ø 8 mm and excellent mechanical properties.

2006 ◽  
Vol 503-504 ◽  
pp. 287-292 ◽  
Author(s):  
D. Nagarajan ◽  
Chakkingal Uday ◽  
P. Venugopal

Severe plastic deformation processes like equal channel angular extrusion (ECAE) have been widely investigated for their ability to produce nano/ ultra fine-grained microstructures. It is well known that submicron sized grains/ sub grains can be produced in most Al alloys using this technique. However, industrial applications of ECAE will depend heavily on the advantages conferred by this process when it is used as an intermediate processing step prior to conventional forming. In the current investigation, the influence of pre processing by ECAE on subsequent post processing by conventional cold extrusion has been investigated. ECAE extrusion was carried out on cylindrical specimens of AA 6101 using an ECAE die with a die angle of 120 degrees. Extrusion was carried out for three passes using two different processing routes. The ECA extruded specimens were subsequently subjected to conventional cold extrusion. The differences in extrusion pressures, which have a strong influence on industrial applications, were noted. Changes in microstructure and mechanical properties were also determined. The obtained results of mechanical properties and microstructure evaluation show that for high strains (strain ε ≈ 2.01), ECAE through some processing routes can be effectively used as an intermediate processing step prior to conventional cold extrusion to obtain a product with enhanced mechanical properties.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 147 ◽  
Author(s):  
Anastasiya Toenjes ◽  
Axel von Hehl

Most heat treatment simulations of precipitation-hardenable aluminum alloys are incomplete or restricted to sub-steps of the process chain. In general, the studies addressing the heat treatment of aluminum components have only provided a qualitative guidance of heat treatment, which does not match the heat treatment that is necessary for specific parts with specific requirements. Thus, a quick and accurate simulation of the whole heat treatment process would hold great economic benefit for industrial applications in predicting suitable heat treatment processes that are able to meet the required mechanical properties of proposed novel aluminum components. In this paper, the development of a time and cost efficient method for generating such prediction models is presented by means of an example aluminum alloy EN AW-6082. During the process sub-steps of solution annealing, quenching and aging, the time-temperature correlations connected to the precipitation-hardening conditions were analyzed. The precision of the prediction model depends on the size of the material database, which should be able to be adjusted to the individual requirements of the simulation user. In order to obtain the greatest time and cost efficiency in generating such a model, a specific experimental design was developed. The results of the method development are presented and discussed.


Author(s):  
V.G. Razdobreev ◽  
D.G. Palamar

The aim of the work is to study the influence of the process of hot asymmetric rolling on the structural state, mechanical properties and operational characteristics of long products of simple form from ordinary carbon steel. To simulate the process of asymmetric high-quality rolling, the mathematical model previously developed in the ISI added the possibility of taking into account cases of rolling in a pair of rolls of different diameters, rolling in a pair of rolls of different materials, rolling with one drive and one non-drive rolls, rolling at different speeds in a pair of rolls and other. The calculations showed a reduction in rolling force to 10 % with an asymmetric rolling process compared to the traditional rolling process. The study of the features of the process of hot asymmetric rolling (shear rolling) compared with the traditional rolling process was carried out under industrial conditions in the production of a 12x12 mm square profile from ordinary low-carbon steel St3sp. It was found that the average values of HRB, σВ, and σТ in the studied samples practically do not differ, and the average values of δ5 are higher by 8 % (abs.) or ~ 27 % (rel.) In samples that were rolled using the asymmetric rolling technology than in samples that were rolled using traditional rolling technology. The estimation of dislocation density by the X-ray diffraction method showed that during hot asymmetric rolling, the dislocation density is reduced by ~ 46% due to the active flow of in-situ polygonization and recrystallization processes during deformation. In this case, the average values of the microfractures of the crystalline lattice of ferrite are 21% lower in the samples obtained by the method of asymmetric rolling than in the samples obtained by traditional rolling. For the first time, a decrease in the total atmospheric corrosion rate was found in samples that were rolled using asymmetric rolling technology (0.39 g/m2xh) compared to samples that were rolled using traditional rolling technology (0.445 g/m2xh).


2019 ◽  
Author(s):  
Marek Jałbrzykowski ◽  
Sławomir Obidziński ◽  
Wioletta Świder ◽  
Magdalena Dołżyńska

The paper presents the research results of the impact of reduced graphene oxide (RGO) on selected mechanical and functional properties of LDPE foil. The foils were made by blow extrusion, with different amounts of RGO added to the granulate prior the extrusion process. Prepared foil samples were assessed for mechanical properties in a static tensile test and the assessment of their bacterial resistance was tested. The impact of RGO on antibacterial interactions and favorable mechanical properties of the foils were found. Analysis of the results allowed to select the most advantageous solution which was prepared for industrial applications.


2020 ◽  
Vol 62 (10) ◽  
pp. 1017-1024
Author(s):  
Serkan Aktas ◽  
Yasin Kisioglu

Abstract Bolt production with a grade of 10.9 class quality made from AISI4140 material with a low thread rolling index is usually implemented in accordance with the thread rolling method (cold forming) in industrial applications. In this method, the effects of die revolutions and multiple passes are unknown in the thread forming process as the devices are usually operated with respect to geometrical dimensions but not the mechanical properties and microstructures of the material. In the literature there are few studies on microstructures of low-carbon steel having a higher thread rolling index in bolt production. This study experimentally examined the effects of the processing parameters on the mechanical properties and microstructures. Parameters such as forming speed and single or multi-pass influences were considered in the production of M12 × 1.75 and M20 × 2.5 fasteners widely used in industrial applications. The experiments identified the behavior of the mechanical properties, microstructures and micro-hardness of the AISI4140 material at two forming speeds (rpm) and three passes in the thread rolling process. Thus, significantly sensible outcomes as a function of processing parameters were obtained considering the thread strength viewpoints.


Author(s):  
Ramesh Chinnakurli Suryanarayana ◽  
Sikhakolli Ramakrishna ◽  
Ummar Khan Attaullah ◽  
Smitha Hanumantha Badnur ◽  
Kumar Saheb

Extrusion of metal matrix composites (MMCs) is a very challenging one where in the bond between the reinforcement and the matrix alloy is crucial in getting high quality extrusions for industrial applications. In recent years researchers are focusing on developing aluminium based composites with metallic coated reinforcement to achieve good interfacial bonds to ensure smooth load transfer from the matrix on to reinforcement. However no information is available as regards hot extrusion of metallic coated reinforced MMCs. In the light of the above, the present work focuses on a systematic investigation on effect of extrusion process parameters on mechanical properties of Al6061-Ni-P coated SiC composites. From the investigation, it is observed that hardness, yield and ultimate strength of Al2014-SiC (Both uncoated and Ni-P coated) composites are higher when compared with the matrix alloy for all the extrusion ratios studied (4:1,5:1,10:1,15.5:1) at a given extrusion temperature. However, the ductility of composites decreases with increase in extrusion ratios. Further, heat treatment has a significant effect on the studied mechanical properties. Increase in extrusion temperatures at a given extrusion ratio has resulted in decrease in hardness and strength properties of both matrix alloy and developed composites.


2006 ◽  
Vol 114 ◽  
pp. 145-150 ◽  
Author(s):  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Małgorzata Lewandowska ◽  
Wacław Pachla ◽  
Mariusz Kulczyk ◽  
...  

Hydrostatic extrusion can be viewed as one of the methods of Severe Plastic Deformation, SPD, for the fabrication of ultra-fine grained alloys which causes a significant increase in the mechanical properties such as tensile strength and hardness. In the present study the microstructure of 6082 aluminium alloy after hydrostatic extrusion was investigated. Hydroextrusion was performed in three steps with accumulated true strains of 1.34, 2.73 and 3.74 respectively. Microstructural observations were carried out using SEM, TEM and light microscopy. Grain and inclusion sizes, shapes and distribution were investigated in the HE processed samples. The study has shown that the hydrostatic extrusion process results in a profound refinement of both the grain size and the inclusions in 6082 aluminium alloy.


Author(s):  
Reza Nemati Chari ◽  
Bijan Mollaei Dariani ◽  
Alireza Fallahi Arezodar

Improvement of mechanical properties of metal strips can be achieved by producing ultra-fine grained microstructure. The equal channel angular rolling process is one of the effective severe plastic deformation techniques which can lead to proper ultra-fine grained structures. In this research, the influence of process parameters such as pre–equal channel angular rolling annealing temperature, number of equal channel angular rolling passes, routes and post–equal channel angular rolling annealing on deformation behavior of 5083 Al alloy is investigated by experimental studies and numerical simulations. Metallurgical investigations revealed that grain refinement and increased dislocation density are two effective parameters on the mechanical strength improvement. The investigation of mechanical properties demonstrated that increasing number of equal channel angular rolling passes leads to a considerable increase in yield stress, ultimate tensile strength and hardness. In contrast, elongation was dramatically reduced. Also, improvement of mechanical properties reaches saturation at a critical strain level, depending on the microstructure evolution. In addition, investigation of effects of post–equal channel angular rolling annealing on the specimens annealed at 415 °C indicated that elongation and toughness increase, accompanying with a low decrease in yield and tensile strengths and hardness. In this study, the equal channel angular rolling process was numerically simulated using ABAQUS software in two different routes for three passes. It is shown that upper roller force is increased by increasing the number of equal channel angular rolling passes, but the rate of this increase is reduced at higher passes.


2019 ◽  
Vol 890 ◽  
pp. 77-91 ◽  
Author(s):  
Vidhura Mahendra

Rosin is the non-volatile exudate of pine resin with hydrophobic characteristics that are widely used and modified as a precursor for many industrial applications such as paints, inks and adhesives. The review paper discusses the rosin, its nature, processing, production material development for green science. The composite materials have been designed and tailored with respect to desired applications to offer a potential replacement of petrochemical use. Rosin consists of different resin acids that can undergo isomerisation at elevated temperatures and interchange its form, which, can be used as a rigid building block to manipulate their mechanical properties and crystallisation behaviours. Modified rosin epoxy binders have been recognised as materials with resistance to a wide variety of chemical conditions that can be used to fabricate a variety of reinforced constructions. Rosin has been employed in foam making in addition to composite material, depicting its ability as a crosslinker.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4499
Author(s):  
Sébastien Germain Careau ◽  
Bernard Tougas ◽  
Elena Ulate-Kolitsky

The study of powder metallurgy processing methods for titanium represents a promising avenue that can respond to a growing demand. This work reports the feasibility of direct powder forging (DPF) as a method to process large spherical Ti-6Al-4V powder into wrought products with noteworthy properties and physical characteristics. Direct powder forging is a thermomechanical process that imparts uniaxial loading to an enclosed and uncompacted powder to produce parts of various sizes and shapes. Stainless steel canisters were filled with prealloyed Ti-6Al-4V powder and consolidated through a multi-step open-die forging and rolling process into wrought DPF bars. After DPF, annealing was performed in the upper α+β phase. The results show that full consolidation was achieved and higher mechanical properties than the Ti-6Al-4V grade F-23 requirements in annealed conditions were obtained. The results also show that direct powder forging of spherical titanium powder could produce wrought mill products and exhibit some potential for further investigation for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document