Non-Isothermal Degradation Kinetics of Asphalt in Relation to its Chemical Composition

2016 ◽  
Vol 701 ◽  
pp. 315-319
Author(s):  
Kevinilo P. Marquez ◽  
Rheo B. Lamorena-Lim

Analysis of the complex and variable nature of the chemical composition of asphalt has been a challenge to engineers and scientists, especially as a means to understand its behavior and suggest ways to improve its properties. In this study, the thermal behavior and the non-isothermal degradation kinetics were analyzed using the isoconversional methods, through Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). TGA and DSC data show gradual change in the mass of the material at increasing temperature, suggesting behavior typical of a homogenous mixture. Kinetic analysis from the TGA data using the Starink modification of the Kissinger-Akahira-Sunose Isoconversional method show an apparent increase in the magnitude of the activation energies at different conversion degree, which suggests a gradual change in the composition of the material at each successive conversion due to a single heat-promoted transformation of each of the components.

2011 ◽  
Vol 171 ◽  
pp. 107-119
Author(s):  
Heena Dhurandhar ◽  
T. Lilly Shanker Rao ◽  
Kirit N. Lad ◽  
Arun Pratap

The crystallization kinetics of metallic glass Ti50Cu20Ni30 has been studied using Differential Scanning Calorimetry (DSC). The DSC thermograms have been analysed using the model-free isoconversional methods and model dependent isokinetic methods. The activation energy(E) for the crystallization process has been determined utilizing; (i) various linear integral isoconversional methods, namely, Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose, Li Tang method (ii) linear differential isoconversional method and (iii) different isokinetic methods. In the present work, we intend to the determination of true value of E. The above methods are found to give consistent results for E.


2011 ◽  
Vol 65 (6) ◽  
pp. 717-726 ◽  
Author(s):  
Mladjan Popovic ◽  
Jaroslava Budinski-Simendic ◽  
Mirjana Jovicic ◽  
Joszef Mursics ◽  
Milanka Djiporovic-Momcilovic ◽  
...  

Differential scanning calorimetry (DSC) was used to evaluate the curing kinetics of two commercial urea-formaldehyde (UF) adhesives having different formaldehyde to urea (F/U) ratio of 1.112 (UF1) and 1.086 (UF2). DSC measurements were done in dynamic scanning regime with heating rates of 5, 10, 15 and 20?C?min-1 in order to determine the activation energy for each adhesive. Obtained data were analyzed using isoconversional methods with application of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose kinetic models. In addition, different catalyst levels were tested at the heating rate of 10?C/min. Results showed that the adhesive with higher F/U ratio achieved higher activation energy, while having lower peak temperature of curing reaction. It was also noticed that the increase of catalyst level influenced the increase of reaction enthalpy of the adhesive with lower F/U ratio.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


2019 ◽  
Vol 107 (2) ◽  
pp. 165-178
Author(s):  
Noura Mossaed Saleh ◽  
Ghada Adel Mahmoud ◽  
AbdelRahman AbdelMonem Dahy ◽  
Soliman Abdel-Fadeel Soliman ◽  
Refaat Mohamed Mahfouz

Abstract Kinetics of dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate with 103 kGy total γ-ray dose absorbed in air atmosphere were studied by isoconversional nonisothermal method. The dehydration proceeds in two steps with the elimination of 0.8 and 0.4 mol of H2O, respectively. This result indicates that the investigated neodymium (III) acetate hydrate contains 1.2 mol of crystalline water in its structure. The dehydration reactions are best described by nucleation (A2 model) and gas diffusion (D4 model) for unirradiated and γ-ray irradiated samples, respectively. Analysis of the kinetic data using linear and nonlinear isoconversional methods showed that the apparent activation energy, Ea (kJ/mol) is dependent on the conversion degree, α, of the dehydration process. The Ea−α plots for both unirradiated and γ-ray irradiated neodymium (III) acetate hydrate showed that the dehydration is a complex process and contains multistep reactions. The results showed that γ-ray irradiation has a significant effect on the kinetics and thermodynamic parameters of the dehydration reaction. Powder X-ray diffraction showed that neodymium (III) acetate hydrate has a monoclinic system (SG P2/m) and no phase transformation was detected by γ-ray irradiation up to 103 kGy absorbed dose. The system maintains the same crystal structure before and after dehydration.


2020 ◽  
Vol 4 (2) ◽  
pp. 52
Author(s):  
Thaís Larissa do Amaral Montanheiro ◽  
Beatriz Rossi Canuto de Menezes ◽  
Larissa Stieven Montagna ◽  
Cesar Augusto Gonçalves Beatrice ◽  
Juliano Marini ◽  
...  

Carbon nanotubes (CNT)-reinforced polymeric composites are being studied as promising materials due to their enhanced properties. However, understanding the behavior of polymers during non-isothermal crystallization is important once the degree of crystallinity and crystallization processes are affected when nanoparticles are added to matrices. Usually, crystallization kinetics studies are performed using a model-fitting method, though the isoconversional method allows to obtain the kinetics parameter without assuming a crystallization model. Therefore, in this work, CNTs were oxidized (CNT-Ox) and functionalized with gamma-aminobutyric acid (GABA) (CNT-GB) and incorporated into a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrix. The influence of the addition and functionalization of CNT in the crystallization kinetics of PHBV was evaluated using the isoconversional method with differential scanning calorimetry (DSC), and by polarized light optical microscopy (PLOM) and Shore D hardness. The incorporation and functionalization of CNT into PHBV matrix did not change the Šesták and Berggren crystallization model; however, the lowest activation energy was obtained for the composite produced with CNT-GB, suggesting a better dispersion into the PHBV matrix. PLOM and Shore D hardness confirmed the results obtained in the kinetics study, showing the smallest crystallite size for CNT-containing nanocomposites and the highest hardness value for the composite produced with CNT-GB.


2020 ◽  
Vol 4 (3) ◽  
pp. 111
Author(s):  
Zohre Karami ◽  
Seyed Mohammad Reza Paran ◽  
Poornima Vijayan P. ◽  
Mohammad Reza Ganjali ◽  
Maryam Jouyandeh ◽  
...  

Layered double hydroxide (LDH) minerals are promising candidates for developing polymer nanocomposites and the exchange of intercalating anions and metal ions in the LDH structure considerably affects their ultimate properties. Despite the fact that the synthesis of various kinds of LDHs has been the subject of numerous studies, the cure kinetics of LDH-based thermoset polymer composites has rarely been investigated. Herein, binary and ternary structures, including [Mg0.75 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, [Mg0.75 Al0.25 (OH)2]0.25+ [(NO3−)0.25∙m H2O]0.25− and [Mg0.64 Zn0.11 Al0.25 (OH)2]0.25+ [(CO32−)0.25/2∙m H2O]0.25−, have been incorporated into epoxy to study the cure kinetics of the resulting nanocomposites by differential scanning calorimetry (DSC). Both integral and differential isoconversional methods serve to study the non-isothermal curing reactions of epoxy nanocomposites. The effects of carbonate and nitrate ions as intercalating agents on the cure kinetics are also discussed. The activation energy of cure (Eα) was calculated based on the Friedman and Kissinger–Akahira–Sunose (KAS) methods for epoxy/LDH nanocomposites. The order of autocatalytic reaction (m) for the epoxy/Mg-Al-NO3 (0.30 and 0.254 calculated by the Friedman and KAS methods, respectively) was smaller than that of the neat epoxy, which suggested a shift of the curing mechanism from an autocatalytic to noncatalytic reaction. Moreover, a higher frequency factor for the aforementioned nanocomposite suggests that the incorporation of Mg-Al-NO3 in the epoxy composite improved the curability of the epoxy. The results elucidate that the intercalating anions and the metal constituent of LDH significantly govern the cure kinetics of epoxy by the participation of nitrate anions in the epoxide ring-opening reaction.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2232 ◽  
Author(s):  
Piotr Krawiec ◽  
Łukasz Warguła ◽  
Daniel Małozięć ◽  
Piotr Kaczmarzyk ◽  
Anna Dziechciarz ◽  
...  

The article presents the potential impact of flat drive and transport belts on people’s safety during a fire. The analysis distinguished belts made of classically used fabric–rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products’ multilayers during the thermal decomposition and combustion can be a source of emissions for unpredictable and toxic substances with different concentrations and compositions. In the evaluation of the compared belts, a testing methodology was used to determine the toxicometric indicators (WLC50SM) on the basis of which it was possible to determine the toxicity of thermal decomposition and combustion products in agreement with the standards in force in several countries of the EU and Russia. The analysis was carried out on the basis of the registration of emissions of chemical compounds during the thermal decomposition and combustion of polymer materials at three different temperatures. Moreover, the degradation kinetics of the polymeric belts by using the thermogravimetric (TGA) technique was evaluated. Test results have shown that products of thermal decomposition resulting from the neoprene (NE22), leder leder (LL2), thermoplastic connection (TC), and extra high top cower (XH) belts can be characterized as moderately toxic or toxic. Their toxicity significantly increases with the increasing temperature of thermal decomposition or combustion, especially above 450 °C. The results showed that the belts made of several layers of polyamide can be considered the least toxic in fire conditions. The TGA results showed that NBR/PA/PA/NBR belt made with two layers of polyamide and the acrylonitrile–butadiene rubber has the highest thermal stability in comparison to other belts.


2014 ◽  
Vol 605 ◽  
pp. 35-38
Author(s):  
Eirini Varouti

The aim of the present work was the preparation and characterization of FeSiB amorphous magnetic ribbons with the following chemical composition: Fe80SixB20-x, x=5,6,8 and Fe75Si15B10. Differential Scanning Calorimetry was employed in order to study the thermal stability and structural changes during the transformations that took place. Much emphasis is placed on the analysis of the crystallization kinetics.


2019 ◽  
Vol 38 (1) ◽  
pp. 95
Author(s):  
Mirjana Jovicic ◽  
Oskar Bera ◽  
Katalin Meszaros Szecsenyi ◽  
Predrag Kojic ◽  
Jaroslava Budinski-Simendic ◽  
...  

PMMA (poly(methyl methacrylate)) nanocomposites differing in their nature, size, and surface area were prepared containing one volume percent of silica, alumina or titania. These samples and pure PMMA were prepared in order to analyze how the presence of nanooxides affects the thermal stability and degradation kinetics of the materials. A detailed study of thermal degradation and thermal changes was performed by Simultaneous Thermogravimetry and Differential Scanning Calorimetry (SDT). The proposed mathematical model, including all three heating rates in one minimizing function, well fitted all TGA data obtained with a very high coefficient of correlation. This enabled an assessment of four decomposition steps of the PMMA samples and a calculation of their activation energies and individual contributions to total mass loss. The addition of the largest nanoparticles (titania) caused the highest activation energy for each DTG stage of the PMMA/nanooxide systems. The enhancement of head-to-head H–H bonding strength was achieved by addition of alumina and titania. The influence of the size and nature of nanoparticles on the glass transition temperature of prepared PMMA systems was also determined.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2813 ◽  
Author(s):  
Sergey Vyazovkin

The Kissinger method is an overwhelmingly popular way of estimating the activation energy of thermally stimulated processes studied by differential scanning calorimetry (DSC), differential thermal analysis (DTA), and derivative thermogravimetry (DTG). The simplicity of its use is offset considerably by the number of problems that result from underlying assumptions. The assumption of a first-order reaction introduces a certain evaluation error that may become very large when applying temperature programs other than linear heating. The assumption of heating is embedded in the final equation that makes the method inapplicable to any data obtained on cooling. The method yields a single activation energy in agreement with the assumption of single-step kinetics that creates a problem with the majority of applications. This is illustrated by applying the Kissinger method to some chemical reactions, crystallization, glass transition, and melting. In the cases when the isoconversional activation energy varies significantly, the Kissinger plots tend to be almost perfectly linear that means the method fails to detect the inherent complexity of the processes. It is stressed that the Kissinger method is never the best choice when one is looking for insights into the processes kinetics. Comparably simple isoconversional methods offer an insightful alternative.


Sign in / Sign up

Export Citation Format

Share Document