Characterization of Cr2O3 Adhesion Properties by Destructive Testing in Accordance with the APS Metal Spraying Process Parameters

2017 ◽  
Vol 750 ◽  
pp. 91-96
Author(s):  
Roxana Alexandra Gheța ◽  
Mariana Goran ◽  
Alina Elena Bușaru ◽  
Laurenția Bichir ◽  
Gabriel Marius Dumitru

This paper aims to study the correlation between some parameters of the metalspraying by APS process and the level of chromium oxide (Cr2O3) adhesion to the base material. Among the properties of the layers deposited by APS are those of wear resistance. In the context of evaluating the coatings properties and understanding aspects related to the coat structure phenomena, the purpose of the experiment presented here is to characterize the adherence of thermal sprayed coating Cr2O3. Because, the main problem of metalspraying layers is adhesion to the base material, there were subjected to tensile testing 2 samples made by 1C45 steel, which were previously bonded with an epoxy glue. The adhesion of the deposited layer on the basic material is important for ensuring the quality of products. The results show that the quality of surfaces and the existence of accidental defects at the interface lead to a decrease of adherence.

Author(s):  
Maria Cristina Dijmarescu

Destructive and non-destructive testing of materials present a rapid expansion given by the increase in market demand caused by the desire to obtain an increasingly better quality of products. The continuous increase in quality demands leads directly to the need to implement and modernize the techniques, methods, and equipment used for quality control. Consequently, the need for product testing services has a rapid growth. This paper presents the strength and weaknesses of implementing IT tools for the estimation of the measurement uncertainty in testing laboratories and the impact of these tools on the economic part


2015 ◽  
Vol 787 ◽  
pp. 771-775
Author(s):  
Debalaxmi Pradhan ◽  
R.K. Singh

TheProduction of biofuel from biomass sources is believed to reduce the reliance of fossil fuel and its cost. This investigation was aimed to produce and characterize the bio-oil obtained from co-pyrolysis. Two different feed stocks were used for co-pyrolysis; one is Mahua seed (MS) and the other one is Polystyrene (PS). The effect in addition of plastic to biomass in pyrolysis process were investigated on the yield and quality of products. Experiments were conducted in a semi-batch pyrolysis reactor under various parameters of temperature, heating rate and blending ratio. The results indicated that a temperature of 525 °C, and blend ratio of 1:1is maximumwith a heating rate of 20 °C/min. The yield of bio-oil obtained from the co-pyrolysis was found to be approximately 71%, which was higher about 22% than that of yield obtained from pyrolysis of Mahua seed (MS) alone. Further the bio-oil was characterized using different spectroscopic and chromatographic analyses. The analysis of the results for characterization of bio-oil indicated that the synergetic effect increased the bio-oil yield and its quality.


2020 ◽  
Author(s):  
Mihaela Nituica ◽  
Laurentia Alexandrescu ◽  
Mihai Georgescu ◽  
Maria Sonmez ◽  
Maria Daniela Stelescu ◽  
...  

In the European Union, the potential for recycling technological and post-consumer polymeric waste is untapped. Their recycling and reuse are very low, compared to other types of waste such as glass, paper, etc., and the rates of storage, even of incineration, is very high in terms of percentage. Therefore, by reusing them, but also making use of new advanced technologies, we can contribute to improving the quality of products, and to environmental protection by recycling waste, protecting human health by eliminating toxins during their incineration, but also increasing turnover for global economic agents. Thus, this paper presents the obtaining and characterization of an antibacterial compound based on EPDM elastomer and wood waste (sawdust). The antibacterial compound is characterized from a physical-mechanical and structural point of view (FT-IR), all according to standards in force.


Author(s):  
C Monetti ◽  
S Ilo ◽  
T Lebersorger

Cold metal forming is a versatile and very efficient technology in the manufacture of metal components. In cold metal forming processes high pressure is generated at the tool-workpiece interface, so that good lubrication is required to reduce wear. This improves tool life and the quality of products. The lubricants used in the forming processes usually contain appropriate basis oils with anti-wear (AW) and extreme pressure (EP) additives. In order to examine how wear occurs during cold metal forming, the SRV (Schwingung Reibung Verschleiss) reciprocating-sliding tribometer equipped with a cylinder-on-disc line- contact testing system was adapted and used to characterize lubricant behaviour. Friction coefficient and wear rate were determined under progressively increasing load conditions. The final worn volumes of the flat and the cylinder were evaluated by using optical microscopy methods. The measurement system was validated by replicate tests using some commercially available forming lubricants as reference in a load range of 100-1000 N. The oscillating tribo-test-rig can be used to characterize lubricants for cold metal forming processes by testing the combined effects of different additive systems and their interaction with contacting materials.


2011 ◽  
Vol 471-472 ◽  
pp. 103-108 ◽  
Author(s):  
Zahra Dashtizadeh ◽  
Aidy Ali ◽  
Abdan Khalina

It is well known those two popular methods of testing; destructive testing based on fracture mechanics and non-destructive testing (NDT) which does not make any damage in the specimen. NDT was first used for military purpose but nowadays it is used widely in many fields such as composite materials, medical purposes, fire safety, laser welding, food safety and quality and characterization of materials. The aim of this paper is to review the recent advancement of thermography non-destructive methods especially in testing a quality of bio-composites materials. The review reveals the advantages and disadvantages of pursuing any of the available methods in NDT on bio composite materials.


2014 ◽  
Vol 1029 ◽  
pp. 50-55 ◽  
Author(s):  
Teodor Machedon-Pisu ◽  
Mihai Alexandru Luca ◽  
Elena Machedon Pisu

The purpose of this paper is to analyze the quality of cut surfaces with plasma in the free atmosphere and in the water bed of metallic materials being welded. This process leads to savings in labor, materials, supplies and other costs of production, having as purpose the decrease in the cost of cutting the work piece and reducing deformation and heat affected zone in the piece cut, providing alternatives to processing cutting. It was designed and built a device cutting water bed that has been proven. In the macroscopic analysis reveals that the cutting in water bed slag layer is lower. After microhardness measurements (base material, heat affected zone, the cut) it is found that the cutting in water bed cut occurs on the surface microhardness increased by 36% .


2021 ◽  
Vol 3 (1(59)) ◽  
pp. 23-27
Author(s):  
Vyacheslav Royanov ◽  
Irina Zakharova

The object of research is the control of the process of formation of a spraying air flow and the transfer of particles of liquid metal from electrodes during arc spraying. One of the problem areas of the arc spraying process is the oxidation of the sprayed metal particles by the oxygen of the air flow during their transportation to the sprayed surface. This leads to the formation of a sufficiently large amount of oxides of chemical elements, which significantly deteriorate the adhesion strength and burn out alloying elements that are necessary to obtain a wear-resistant and corrosion-resistant coating. The suitability and durability of coatings during use depends on the strength of adhesion to the substrate. In the course of the study, methods were used to determine the adhesion strength of the coating to the base – the Steffens method and methods for studying the microstructure of coatings were taken as the basis. The data was processed and dependencies were plotted. The proposed method makes it possible to improve the quality of the resulting coating in terms of such an indicator as improvements in chemical composition. And also to influence the chemical composition by controlling the process of transfer of molten metal using a pulsating air flow. The obtained results of approbation of the method allow us to consider it effective, as evidenced by the quality of the obtained coatings. This is due to the fact that the correctness of the formulation and solution of the problem provided adequate results. In contrast to the existing methods, the proposed one makes it possible to significantly influence the amount of harmful oxygen involved in the formation of a sprayed coating, which makes it possible to obtain a sprayed layer with the required performance characteristics. And also allows to improve its quality without significant capital costs. In addition, the issues of resource and energy saving are being addressed, since the burnout of chemical elements decreases and the air consumption during arc metallization decreases. To solve this problem, a simple design of the pulsator is proposed, which provides the ability to control the spray flow by adjusting the level of overlapping of the holes.


Author(s):  
S.B. Kudryashev ◽  
◽  
N.S. Assev ◽  
R.D. Belashov ◽  
V.A. Naumenko ◽  
...  

The article is devoted to solving one of the most important problems of the development of the sugar industry in Russia – the modernization of sugar production processes. Today, sugar production is actively being modernized, shifting most of its processes to the path of avomatization and optimization to improve the quality of products. This article describes one of the main ways to obtain information about the concentration of sucrose in syrup in the production of sugar.


2018 ◽  
Author(s):  
C. Coy ◽  
A.V. Shuravilin ◽  
O.A. Zakharova

Приведены результаты исследований по изучению влияния промышленной технологии возделывания картофеля на развитие, урожайность и качество продукции. Выявлена положительная реакция растений на подкормку K2SO4 в период посадки. Корреляционно-регрессионный анализ урожайности и качества клубней выявил высокую степень достоверности результатов опыта. Содержание нитратов и тяжелых металлов в клубнях было ниже допустимых величин.The results of studies on the impact of industrial technology of potato cultivation on growth, yield and quality of products. There was a positive response of plants to fertilizer K2SO4 in the period of planting. Correlation and regression analysis of yield and quality of tubers revealed a high degree of reliability of the results of experience. The contents of nitrates and heavy metals in tubers was below the permissible values.


2019 ◽  
Author(s):  
Chem Int

Liquid effluents discharged by hospitals may contain chemical and biological contaminants whose main source is the different substances used for the treatment of patients. This type of rejection can present a sanitary potentially dangerous risk for human health and can provoke a strong degradation of diverse environmental compartments mainly water and soils. The present study focuses on the quality of the liquid effluents of Hassani Abdelkader’s hospital of Sidi Bel-Abbes (West of Algeria). The results reveal a significant chemical pollution (COD: 879 mgO2/L, BOD5: 850 mgO2/L, NH4+ : 47.9 mg/l, NO2- : 4.2 mg/l, NO3- : 56.8 mg/l with respect to WHO standard of 90 mgO2/L, 30 mgO2/L, 0.5 mg/l, 1 mg/l and 1 mg/l respectively). However, these effluents are biodegradable since the ratio COD/BOD5 do not exceeded the value of 2 in almost all samples. The presence of pathogen germs is put into evidence such as pseudomonas, the clostridium, the staphylococcus, the fecal coliforms and fecal streptococcus. These results show that the direct discharge of these effluents constitutes a major threat to human health and the environment.


Sign in / Sign up

Export Citation Format

Share Document