Ceramic Roles in Aseptic Loosening: In Vivo Macro- and Microscopic Histological Evaluation

2017 ◽  
Vol 758 ◽  
pp. 228-233
Author(s):  
Stefano D'Adamio ◽  
G. Maccauro ◽  
Giuseppe Malerba ◽  
Corrado Piconi

Prosthetic loosening in absence of infection (aseptic loosening) is the most common reason for revision of Total Hip Replacements (THR) Alumina and/or zirconia-based ceramic materials generally displayed high wear resistance and are considered suitable for load bearing application. To characterize the possible chronic cellular reactions to ceramic debris is then relevant in view of their long-term implantation. Low density ceramic pellets obtained by alumina and zirconia (Y-TZP) medical-grade precursors, were sintered at intermediate density and implanted in the patellar tendon of 24 NZW adult rabbits (group A). In this way the progressive release into the joint space of grains detached from surface of the pellets by the motion of the joint. Other 24 NZW rabbits (group B) received 5mg of powders injected in the articular capsule. Animals were killed at different intervals (1,3,6,12 months). Retrieved knee joints underwent X-Ray, histological and ultrastructural analysis. Peripheral organs (liver, kidney, lung, spleen, brain) were collected at same time. For, histologic analysis of tissue specimens collected in revision surgeries were fixed in 10% formalin, then decalcified ethylendiamintetracetic acid (EDTA), dehydrated and embedded in paraffin, sectioned and stained with hematoxylin-eosin. Histologic reaction was similar for the two ceramics and independent of the physical form (powders or pellets). Ceramic particulate was observed in the periprosthetic tissue membrane, the smaller inside mononuclear histiocyte-like cells in granuloma-like tissue, while the largest were in a synovial-like membrane inside a stroma poor in vessel containing mononuclear cells and rarely giant cells. No toxic nor carcinogenic effects were observed in peripheral organs retrieved at different time intervals. Although the ankyloses of the joints is a limiting factor for the duration of the test, this method may be a useful tool to evaluate the reactions to wear debris, and may result suitable also to evaluate the chronic response to metals or polymers of clinical interest.

2015 ◽  
Vol 41 (6) ◽  
pp. e267-e281 ◽  
Author(s):  
Mike Barbeck ◽  
Jonas Lorenz ◽  
Marzellus Grosse Holthaus ◽  
Nina Raetscho ◽  
Alica Kubesch ◽  
...  

The present study analyzed the tissue reaction to 2 novel porcine-derived collagen materials: pericardium versus dermis. By means of the subcutaneous implantation model in mice, the tissue reactions were investigated at 5 time points: 3, 10, 15, 30, and 60 days after implantation. Histologic, histochemical, immunhistologic, and histomorphometric analysis methodologies were applied. The dermis-derived material underwent an early degradation while inducing mononuclear cells together with some multinucleated giant cells and mild vascularization. The pericardium-derived membrane induced 2 different cellular tissue reactions. The compact surface induced mononuclear cells and multinucleated giant cells, and underwent a complete degradation until day 30. The spongy surface of the membrane induced mainly mononuclear cells, and served as a stable barrier membrane for up to 60 days. No transmembranous vascularization was observed within the spongy material surface layer. The present data demonstrate the diversity of the cellular tissue reaction toward collagen-based materials from different tissues. Furthermore, it became obvious that the presence of multinucleated giant cells was associated with the material breakdown/degradation and vascularization. Further clinical data are necessary to assess extent to which the presence of multinucleated giant cells observed here will influence the materials stability, integration, and, correspondingly, tissue regeneration within human tissue.


2007 ◽  
Vol 342-343 ◽  
pp. 73-76 ◽  
Author(s):  
Young Kwon Seo ◽  
Gung Min Choi ◽  
Soon Yong Kwon ◽  
Hwa Sung Lee ◽  
Yong Soon Park ◽  
...  

The aim of this study was to estimate the mechanical properties and evaluate the biocompatibility of silk and PGA scaffolds as an artificial ligament to an ACL reconstruction. The scaffold for the artificial ligament was braided / knitted silk or PGA thread. The mechanical properties, cell growth, and subcutaneous tissue reactions were determined for both types of scaffolds. The breaking load of the PGA scaffold was double that of the sericin removed silk scaffold (SRSS). However, the initial attachment and growth of human ACL cells on the SRSS was superior to the PGA scaffold. In addition, the immune response was significantly higher on the PGA scaffold after 72 h (p<0.05) compared with the sericin removed silk scaffold by T lymphocyte and mononuclear cells (MNCs) in vitro cultures. In vivo, the ACL scaffold made from silk or PGA were implanted in the subcutaneous layer in rats and harvested 1 week later. A histological evaluation of the scaffolds explants revealed the presence of monocytes in the SRSS, and an absence of giant cells in all cases. An inflammatory tissue reaction was more conspicuous around the silk scaffold containing sericin and even more around the PGA scaffold compared with SRSS. These results support the conclusion that a properly prepared SRSS, aside from providing benefits in terms of biocompatibility both in vitro and in vivo, can provide suitable scaffolds for the support of ACL cell growth. These results suggest that a SRSS for ACL repair can overcome the current limitations with the PGA scaffold. And SRSS is biocompatible, and the in vitro T cell and MNCs culture model showed inflammatory responses that were comparable to those observed in vivo.


Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 852-862 ◽  
Author(s):  
Ralf Kronenwett ◽  
Ulrich Steidl ◽  
Michael Kirsch ◽  
Georg Sczakiel ◽  
Rainer Haas

The use of antisense oligodeoxyribonucleotides (ODN) is a potential method to switch off gene expression. The poor cellular uptake of ODN in primary cells still is a limiting factor that may contribute to the lack of functional efficacy. Various forms of cationic lipids have been developed for efficient delivery of nucleic acids into different cell types. We examined the two cationic lipids DOTAP and DOSPER to improve uptake of ODN into primary human hematopoietic cells. Using a radiolabeled 23-mer, ODN uptake into blood-derived mononuclear cells could be increased 42- to 93-fold by DOTAP and 440- to 1,025-fold by DOSPER compared with application of ODN alone. DOTAP was also effective for delivery of ODN into leukocytes within whole blood, which may resemble more closely the in vivo conditions. As assessed by fluorescein isothiocyanate–conjugated ODN both cationic lipids enhanced cytoplasmic accumulation of ODN in endosome/lysosome-like structures with a partial shift of fluorescence to the whole cytoplasm and the nucleus following an incubation of 24 hours. ODN uptake by cationic lipids into different hematopoietic cell subsets was examined by dual-color immunofluorescence analysis with subset-specific monoclonal antibodies. We found a cell type–dependent delivery of ODN with greatest uptake in monocytes and smallest uptake in T cells. CD34+ cells, B cells, and granulocytes took up ODN at an intermediate level. Uptake of ODN into isolated CD34+cells could be increased 100- to 240-fold using cationic lipids compared with application of ODN alone. Stimulation of CD34+ cells by interleukin-3 (IL-3), IL-6, and stem cell factor did not significantly improve cationic lipid-mediated ODN delivery. Sequence-specific antisense effects in clonogenic assays could be shown by transfection of bcr-abl oncogene-directed antisense ODN into primary cells of patients with chronic myelogenous leukemia using this established protocol. In conclusion, cationic lipids may be useful tools for delivery of antisense ODN into primary hematopoietic cells. These studies provide a basis for clinical protocols in the treatment of hematopoietic cells in patients with hematologic malignancies and viral diseases by antisense ODN.


Blood ◽  
1998 ◽  
Vol 91 (3) ◽  
pp. 852-862 ◽  
Author(s):  
Ralf Kronenwett ◽  
Ulrich Steidl ◽  
Michael Kirsch ◽  
Georg Sczakiel ◽  
Rainer Haas

Abstract The use of antisense oligodeoxyribonucleotides (ODN) is a potential method to switch off gene expression. The poor cellular uptake of ODN in primary cells still is a limiting factor that may contribute to the lack of functional efficacy. Various forms of cationic lipids have been developed for efficient delivery of nucleic acids into different cell types. We examined the two cationic lipids DOTAP and DOSPER to improve uptake of ODN into primary human hematopoietic cells. Using a radiolabeled 23-mer, ODN uptake into blood-derived mononuclear cells could be increased 42- to 93-fold by DOTAP and 440- to 1,025-fold by DOSPER compared with application of ODN alone. DOTAP was also effective for delivery of ODN into leukocytes within whole blood, which may resemble more closely the in vivo conditions. As assessed by fluorescein isothiocyanate–conjugated ODN both cationic lipids enhanced cytoplasmic accumulation of ODN in endosome/lysosome-like structures with a partial shift of fluorescence to the whole cytoplasm and the nucleus following an incubation of 24 hours. ODN uptake by cationic lipids into different hematopoietic cell subsets was examined by dual-color immunofluorescence analysis with subset-specific monoclonal antibodies. We found a cell type–dependent delivery of ODN with greatest uptake in monocytes and smallest uptake in T cells. CD34+ cells, B cells, and granulocytes took up ODN at an intermediate level. Uptake of ODN into isolated CD34+cells could be increased 100- to 240-fold using cationic lipids compared with application of ODN alone. Stimulation of CD34+ cells by interleukin-3 (IL-3), IL-6, and stem cell factor did not significantly improve cationic lipid-mediated ODN delivery. Sequence-specific antisense effects in clonogenic assays could be shown by transfection of bcr-abl oncogene-directed antisense ODN into primary cells of patients with chronic myelogenous leukemia using this established protocol. In conclusion, cationic lipids may be useful tools for delivery of antisense ODN into primary hematopoietic cells. These studies provide a basis for clinical protocols in the treatment of hematopoietic cells in patients with hematologic malignancies and viral diseases by antisense ODN.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Liam E. Fitzgerald ◽  
Naiara Abendaño ◽  
Ramon A. Juste ◽  
Marta Alonso-Hearn

Mycobacterium tuberculosis,Mycobacterium leprae,Mycobacterium bovis,andMycobacterium aviumsubsp.paratuberculosiscan survive within host macrophages in a dormant state, encased within an organized aggregate of immune host cells called granuloma. Granulomas consist of uninfected macrophages, foamy macrophages, epithelioid cells, and T lymphocytes accumulated around infected macrophages. Within granulomas, activated macrophages can fuse to form multinucleated giant cells, also called giant Langhans cells. A rim of T lymphocytes surrounds the core, and a tight coat of fibroblast closes the structure. Severalin vivomodels have been used to study granuloma’s structure and function, but recently developedin vitromodels of granuloma show potential for closer observation of the early stages of host’s responses to live mycobacteria. This paper reviews culture conditions that resulted in three-dimensional granulomas, formed by the adhesion of cell populations in peripheral blood mononuclear cells infected with mycobacteria. The similarities of these models to granulomas encountered in clinical specimens include cellular composition, granulomas’ cytokine production, and cell surface antigens. A reliablein vitrodormancy model may serve as a useful platform to test whether drug candidates can kill dormant mycobacteria. Novel drugs that target dormancy-specific pathways may shorten the current long, difficult treatments necessary to cure mycobacterial diseases.


Author(s):  
Gustav Ofosu

Platinum-thymine has been found to be a potent antitumor agent, which is quite soluble in water, and lack nephrotoxicity as the dose-limiting factor. The drug has been shown to interact with DNA and inhibits DNA, RNA and protein synthesis in mammalian cells in vitro. This investigation was undertaken to elucidate the cytotoxic effects of piatinum-thymine on sarcoma-180 cells in vitro ultrastructurally, Sarcoma-180 tumor bearing mice were treated with intraperitoneal injection of platinum-thymine 40mg/kg. A concentration of 60μg/ml dose of platinum-thymine was used in in vitro experiments. Treatments were at varying time intervals of 3, 7 and 21 days for in vivo experiments, and 30, 60 and 120 min., 6, 12, and 24th in vitro. Controls were not treated with platinum-thymine.Electron microscopic analyses of the treated cells in vivo and in vitro showed drastic cytotoxic effect.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


Sign in / Sign up

Export Citation Format

Share Document