The Effect of Bismuth on Intermetallics Growth between Lead-Free Solders and Electroless Nickel Immersion Silver (ENIMAG) Surface Finish

2019 ◽  
Vol 796 ◽  
pp. 183-188
Author(s):  
Jaidi Zolhafizi ◽  
Osman Saliza Azlina

Surface finish is coating layer plated on a bare copper board of printed circuit board (PCB). Among PCB surface finishes, Electroless Nickel/Immersion Gold (ENIG) finish is a top choice among electronic packaging manufacturer due to its excellent properties for PCB. However, the use of gold element in ENIG is very high cost and the black pad issue have not been resolved. Thus, by introducing an Electroless Nickel/Immersion Silver (ENImAg) as alternative surface finish hopefully can reduce the cost and offer better properties. The aim of this study is to investigate the effect of bismuth on interfacial reaction during reflow soldering between Sn-2.5Ag (SA25), Sn-3.4Ag-4.8Bi (SAB3448) and ENIMAG surface finish. Solder balls with sizes of 500μm diameters were used. The characteristics of intermetallic compound (IMC) were analyzed by using scanning electron microscopy (SEM), optical microscope and energy dispersive x-ray (EDX). After reflow soldering, the result revealed that only the irregular circle-shape of (Cu,Ni)6Sn5IMC layer was formed at the interface and change to an irregular rod-like shape meanwhile the irregular needle-shape (Ni,Cu)3Sn4was appeared after aging treatment. The result also indicated that, the grain size and thickness of IMC for SAB3448 is smaller and thinner compared to the SA25. The IMC thickness is proportional to the aging duration and IMC morphology for both solder are became thicker, larger and coarser after isothermal aging. No bismuth particle has been detected on SAB3448 solder during top surface examination. In addition, the Bi has been observed can reduce the grain size and the growth rate of IMC. Keywords: ENIMAG, reflow soldering, lead-free solder, intermetallic compound, bismuth

2020 ◽  
Vol 307 ◽  
pp. 31-36
Author(s):  
Nur Shafiqa Safee ◽  
Wan Yusmawati Wan Yusoff ◽  
Ariffin Ismail ◽  
Norliza Ismail ◽  
Maria Abu Bakar ◽  
...  

Tin-Silver-Copper (SnAgCu) lead-free solder on Electroless Nickel Immersion Gold (ENiG) and Immersion Tin (ImSn) surface finish printed circuit board was subjected to blast test. A variation of intermetallic compounds (IMC) layer, hardness and reduced modulus of soldered sample exposed to blast test were intensively investigated using optical microscope and nanoindentation machine. Formation of IMCs due to reaction between solder and substrate during blast test provided deleterious effect of metallurgical bond strength and reliability on the solder joint. Microstructural analysis was evaluated via Infinite Focused Microscope (IFM). The findings of these studies indicate that best surface finished for blast test performance was not necessarily the best surface finish for optimum reliability. ENiG and ImSn surface finish can be advantage or a disadvantage depending on the application, package and reliability requirements. As a result, most component assemblers are using ENiG and ImSn in order to improve solderability as well as the wettability between solder and the substrate and to meet various package requirements.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000117-000122 ◽  
Author(s):  
Cong Zhao ◽  
Thomas Sanders ◽  
Zhou Hai ◽  
Chaobo Shen ◽  
John L. Evans

Abstract This paper investigates the effect of long term isothermal aging and thermal cycling on the reliability of lead-free solder mixes with different solder compositions, PCB surface finishes, and isothermal aging conditions. A variety of surface mount components are considered, including ball grid arrays (BGAs), quad flat no-lead packages (QFNs) and 2512 Surface Mount Resistors (SMRs). 12 lead-free solder pastes are tested; for BGA packages these are reflowed with lead-free solder spheres of SAC105, SAC305 and matched doped solder spheres (“matched” solder paste and sphere composition). Three surface finishes are tested: Organic Solderability Preservative (OSP), Immersion Silver (ImAg), and Electroless Nickel Immersion Gold (ENIG). All test components are subjected to isothermal aging at 125°C for 0 or 12 months, followed by accelerated thermal cycle testing from −40°C to 125°C. Data from the first 1500 cycles is presented here, with a focus on the effect of surface finish on package reliability. Current results demonstrate that the choice of surface finish has a strong effect on reliability. However, different solder materials appear to show different reliability trends with respect to the surface finishes, and the reliability trends of BGA and SMR packages also diverge.


2012 ◽  
Vol 488-489 ◽  
pp. 1375-1379 ◽  
Author(s):  
O. Saliza Azlina ◽  
A. Ourdjini ◽  
I. Siti Rabiatull Aisha

Due to environmental concern, lead-free solder are taking the place of eutectic Sn-Pb solder in electronic packaging industry. Among various lead free alloys, Sn–Ag–Cu (SAC) alloys are leading lead-free candidate solders for various applications because it is offered better properties. This study investigates the interfacial reactions during reflow soldering and isothermal aging between Sn-3.0Ag-0.5Cu (SAC305) and Sn-3.0Ag-0.5Cu-0.05Ni (SACN30505) on electroless nickel/ immersion palladium/immersion gold (ENEPIG) surface finish. The substrates were subjected to isothermal aging at 125°C for up to 2000 hours with solder size diameter of 500μm. The results indicated that after reflow soldering, (Cu, Ni)6Sn5 IMC is formed between solder and substrate while after aging treatment a new IMC was formed between (Cu, Ni)6Sn5 and substrate known as (Ni, Cu)3Sn4. Moreover, after soldering and isothermal aging, Ni-doped (SACN) solder represents a thicker IMC compared to SAC solder. Aging time of solder joints results in an increase of IMC’s thickness and changes their morphologies to become more spherical, dense and with larger grain size. In addition, the results also revealed that the thickness of intermetallics formed is proportional to the aging duration.


2011 ◽  
Vol 415-417 ◽  
pp. 1181-1185 ◽  
Author(s):  
Osman Saliza Azlina ◽  
Ali Ourdjini ◽  
Siti Rabiatull Aisha Idris ◽  
Mohd Ariff Azmah Hanim

In electronic packaging industry, they are now driven technology to green product by replacing leaded-solder with lead-free solder in order to fulfill the European Restriction of Hazardous Substance (RoHS) compliance. Thus, Sn-Ag-Cu lead-free solder family is one of candidates can fulfill this requirement. This study investigates the interfacial reactions during reflow soldering and isothermal aging between Sn-3.0Ag-0.5Cu (SAC305) and electroless nickel/ immersion palladium/immersion gold (ENEPIG). Reliability of solder joint is also examined by performing solid state isothermal aging at 125°C and 150°C for up to 2000 hours. The results revealed that after reflow soldering, (Cu, Ni)6Sn5 IMC is formed between solder and substrate while after aging treatment another IMC was found between (Cu, Ni)6Sn5 and substrate known as (Ni, Cu)3Sn4. Aging time and temperature of solder joints results in an increase of IMC’s thickness and changes their morphologies to become more spherical, dense and with larger grain size. In addition, the results also revealed that the thickness of intermetallics formed is proportional to the aging duration and temperature.


2016 ◽  
Vol 701 ◽  
pp. 127-131
Author(s):  
Hardinnawirda Kahar ◽  
Zetty Akhtar Abd Malek ◽  
Siti Rabiatull Aisha Idris ◽  
Mahadzir Ishak

The formation and growth of the intermetallic were frequently discussed since lead free solder took place replacing the lead solder. However, the effect of multiple reflow process on the intermetallic morphology that was subjected to aging still needs further investigation. Thus, this study aimed to investigate the effect of second reflow towards the intermetallic compound formation and growth. Two types of surface finishes were used such as Immersion Tin (ImSn) and Electroless Nickel Immersion Gold (ENIG). Both test boards were reflowed once with Sn-3Ag-0.5Cu at the temperature of 225 °C and soaking for 8 seconds. Then, they were reflowed again at the same temperature for 25 minutes prior to an isothermal aging process for 250, 500, 1000 and 2000 hours at the temperature of 150 °C. The ProgRes C3 IM7200 Optical Microscope and ImageJ were used for the microstructural study, which includes morphology and thickness. Results indicated that IMC thickness formed between solder and ImSn surface finish increased significantly with 1.28 µm incremental when exposed to the second reflow. Whereas the IMC thickness of ENIG surface finish was increased for up to 0.15 µm. In addition, ENIG showed higher activation energy as compared to ImSn.


2013 ◽  
Vol 845 ◽  
pp. 76-80 ◽  
Author(s):  
Osman Saliza Azlina ◽  
Ali Ourdjini ◽  
Astuty Amrin ◽  
Idris Siti Rabiatull Aisha

The electronic packaging industry is now being driven towards smaller, lighter, and thinner electronic products but with higher performance and more functions. Thus, smaller solder ball sizes are needed for fine solder joint interconnections to fulfill these requirements. This study investigates the interfacial reactions during reflow soldering and isothermal aging between Sn-4.0Ag-0.5Cu (SAC405) and electroless nickel (boron)/ immersion palladium/immersion gold (EN(B)EPIG). Reliability of solder joint has also been investigated by performing solid state isothermal aging at 125 °C for up to 2000 hours. The results revealed that after reflow soldering, (Cu, Ni)6Sn5 IMC is formed between solder and substrate while after aging treatment another IMC was found between (Cu, Ni)6Sn5 and substrate known as (Ni, Cu)3Sn4. Aging time of solder joints resulted in an increase in IMC thickness and a change in morphology into more spherical, dense and with larger grain size. By using optical microscope, the average thickness of the intermetallics was measured and it found that the larger solder balls produced thicker IMC than the smaller solder balls during reflow soldering. However, after aging the smaller solders produced thicker IMC than the larger solders.


Author(s):  
Adam Pearl ◽  
Michael Osterman

Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG), which has been used in component packaging, has been gaining attention as a surface finish for printed wiring boards. The primary role of a printed wiring board surface finish is to provide a solderable surface for assembly, creating a reliable solder interconnect. With regards to reliability, the increased use of mobile electronics has resulted in the need to consider the ability of interconnects to withstand repeated mechanical shocks. This paper examines the drop reliability of both SnPb and SAC305 interconnects formed on ENEPIG finished printed wiring boards. For comparison, the drop reliability test results for similar boards with Immersion Silver (ImAg) board finish are included. Test boards include BGA and resistor packages. The boards are dropped 500 times to achieve failure across the components. Failure analysis revealed that the dominant failure mode for BGA packages on the ENEPIG finish was cracking in the solder balls at the component interface, while for the ImAg finish the dominant failure mode was cratering in the board laminate below the solder pad. For the resistor packages, cracking through the solder joint at the component interface was the dominant failure mode for both the ENEPIG and ImAg finishes. The drop results indicate that both finishes are suitable for systems that could experience mechanical shock due to drop, with components soldered onto ENEPIG with a SAC 305 solder having the highest survivability. The combination of SnPb and ImAg was found to be superior to SAC 305 and ImAg.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rabiatul Adawiyah Mohamed Anuar ◽  
Saliza Azlina Osman

Purpose The surface finish is an essential step in printed circuit boards design because it provides a solderable surface for electronic components. The purpose of this study to investigate the effects of different surface finishes during the soldering and ageing process. Design/methodology/approach The solder joints of Sn-4.0Ag-0.5Cu/Cu and Sn-4.0Ag-0.5Cu/electroless nickel/immersion silver (ENImAg) were investigated in terms of intermetallic (IMC) thickness, morphology and shear strength. The microstructure and compositions of solder joints are observed, and analyzed by using scanning electron microscopy (SEM-EDX) and optical microscope (OM). Findings Compounds of Cu6Sn5 and (Cu, Ni)6Sn5 IMC were formed in SAC405/Cu and SAC405/ENImAg, respectively, as-reflowed. When the sample was exposed to ageing, new layers of Cu3Sn and (Ni, Cu)3Sn5 were observed at the interface. Analogous growth in the thickness of the IMC layer and increased grains size commensurate with ageing time. The results equally revealed an increase in shear strength of SAC405/ENImAg because of the thin layer of IMC and surface finish used compared to SAC405/Cu. Hence, a ductile fracture was observed at the bulk solder. Overall, the ENImAg surface finish showed excellent performance of solder joints than that of bare Cu. Originality/value The novel surface finish (ENImAg) has been developed and optimized. This alternative lead-free surface finish solved the challenges in electroless nickel/immersion gold and reduced cost without affecting the performance.


2010 ◽  
Vol 25 (7) ◽  
pp. 1304-1311 ◽  
Author(s):  
Y.T. Chin ◽  
P.K. Lam ◽  
H.K. Yow ◽  
T.Y. Tou

Electroless nickel (Ni–P) is a common surface finish used in the ball grid array (BGA) package and interfacial reactions between its surface finish and lead-free solders can form complex intermetallic compound (IMC) layers. The presence of minor elements in lead-free solders either intentionally added or due to impurity contamination during solder manufacturing, can affect the solder-joint performance. In this work, interfacial reactions between Ni–P surface finish and the Sn–Ag–Cu solders were modified by varying Ag and Cu contents and also by adding a small amount of minor elements such as phosphorus (P), indium (In), and germanium (Ge). A transmission electron microscope was used to determine the intermetallic layer phases, compositions, crystal structures, and void defects. Varying the solder alloy elements led to the modulation of voids formation.


Sign in / Sign up

Export Citation Format

Share Document