Synthesis and Characterization of Membranes from Cellulose Acetate Derivatives of Corn Husk

2019 ◽  
Vol 818 ◽  
pp. 56-61
Author(s):  
Lucky Setyaningsih ◽  
Harry Priambodo ◽  
Inggar Erfiano ◽  
Sandy Agung ◽  
Rizqi Khrido Utomo

In this study membranes synthesized using cellulose acetate through chemical crosslinking process with polyethylene glycol (PEG) and dimethylformamide (DMF) acts as crosslinker agent. Cellulose is derived from corn husk, which known as agricultural waste that has potential sources of cellulosic fibers in producing cellulose acetate. The prepared membranes of corn husk cellulose were characterized by Fourier transform infrared and X-ray diffraction. The effect of various additives and additives concentration were investigated to obtain swelling degree and tensile strength of membranes. Result showed that highest swelling degree of 236% was achieved in the condition of DMF/S 10% w/w. This condition produce cellulose acetate membrane with thickness of 0.074 mm, tensile strength of 27.5kg/cm2 and elongation of 3.5%.

1990 ◽  
Vol 55 (12) ◽  
pp. 2933-2939 ◽  
Author(s):  
Hans-Hartmut Schwarz ◽  
Vlastimil Kůdela ◽  
Klaus Richau

Ultrafiltration cellulose acetate membrane can be transformed by annealing into reverse osmosis membranes (RO type). Annealing brings about changes in structural properties of the membranes, accompanied by changes in their permeability behaviour and electrical properties. Correlations between structure parameters and electrochemical properties are shown for the temperature range 20-90 °C. Relations have been derived which explain the role played by the dc electrical conductivity in the characterization of rejection ability of the membranes in the reverse osmosis, i.e. rRO = (1 + exp (A-B))-1, where exp A and exp B are statistically significant correlation functions of electrical conductivity and salt permeation, or of electrical conductivity and water flux through the membrane, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taslima Ahmed Tamanna ◽  
Shah Alimuzzaman Belal ◽  
Mohammad Abul Hasan Shibly ◽  
Ayub Nabi Khan

AbstractThis study deals with the determination of new natural fibers extracted from the Corypha taliera fruit (CTF) and its characteristics were reported for the potential alternative of harmful synthetic fiber. The physical, chemical, mechanical, thermal, and morphological characteristics were investigated for CTF fibers. X-ray diffraction and chemical composition characterization ensured a higher amount of cellulose (55.1 wt%) content and crystallinity (62.5%) in the CTF fiber. The FTIR analysis ensured the different functional groups of cellulose, hemicellulose, and lignin present in the fiber. The Scherrer’s equation was used to determine crystallite size 1.45 nm. The mean diameter, specific density, and linear density of the CTF fiber were found (average) 131 μm, 0.86 g/cc, and 43 Tex, respectively. The maximum tensile strength was obtained 53.55 MPa for GL 20 mm and Young’s modulus 572.21 MPa for GL 30 mm. The required energy at break was recorded during the tensile strength experiment from the tensile strength tester and the average values for GL 20 mm and GL 30 mm are 0.05381 J and 0.08968 J, respectively. The thermal analysis ensured the thermal sustainability of CTF fiber up to 230 °C. Entirely the aforementioned outcomes ensured that the new CTF fiber is the expected reinforcement to the fiber-reinforced composite materials.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


2019 ◽  
Vol 48 (2) ◽  
pp. 119-128 ◽  
Author(s):  
Safa Abd El kader Mohamed Hamed ◽  
Rushdya Rabee Ali Hassan

Purpose This paper aims to investigate the effect of acidity on the morphology of archeological paper, especially in the presence of colors and whether natural pigments play a role in the process of degradation. Design/methodology/approach The morphological changes in the cellulosic fibers of the manuscripts because of acidity were investigated using environmental scanning electron microscope (ESEM). Ten historical samples were collected from different manuscripts suffering from acidity. X-ray diffraction was used to identify the inks and pigments that were used in some samples. Additionally, Fourier transform infrared microscopy was used to identify the binding medium. Findings The results confirmed that carbon ink, ultramarine, cinnabar and gold pigments were applied to some manuscripts with Arabic gum. As for ESEM investigation, the results proved that acidity badly affected the integrity of the cellulosic fibers resulting in their embrittlement. The micrographs showed differences in fiber degradation according to pH value. The presence of inks and pigments increased the degradation extent resulting from acidity. Originality/value This paper addresses a specific need to study the behavior of degradation in paper manuscripts, thus helping the conservators find solutions to the phenomenon.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Pravir Kumar ◽  
Katerina Skotnicova ◽  
Ashis Mallick ◽  
Manoj Gupta ◽  
Tomas Cegan ◽  
...  

The present study investigated the effects of alloying and nano-reinforcement on the mechanical properties (microhardness, tensile strength, and compressive strength) of Mg-based alloys and composites. Pure Mg, Mg-3Sn alloy, and Mg-3Sn + 0.2 GNP alloy-nanocomposite were synthesized by powder metallurgy followed by hot extrusion. The microstructural characteristics of the bulk extruded samples were explored using X-ray diffraction, field-emission scanning electron microscopy, and optical microscopy and their mechanical properties were compared. The microhardness, tensile strength, and compressive strength of the Mg-3Sn alloy improved when compared to those of monolithic Mg sample and further improvements were displayed by Mg-3Sn + 0.2 GNP alloy-nanocomposite. No significant change in the compressive strain to failure was observed in both the alloy and the alloy-nanocomposite with respect to that of the pure Mg sample. However, an enhanced tensile strain to failure was displayed by both the alloy and the alloy-nanocomposite.


2021 ◽  
Author(s):  
Roni Maryana ◽  
Muryanto Muryanto ◽  
Eka Triwahyuni ◽  
Oktaviani Oktaviani ◽  
Hafiizh Prasetia ◽  
...  

Abstract This study was carried out to investigate the extraction of cellulose acetate (CA) from cajuput (Melaleuca leucadendron) twigs and sugarcane (Saccharum officinarum) bagasse using an environmentally friendly method. At first, cellulose was extracted from cajuput twigs (CT) and sugarcane bagasse (SB) through prehydrolysis followed by soda (NaOH) pulping and elementary chlorine-free (ECF) bleaching. Later, the extracted cellulose was acetylated using iodine (I) as a catalyst. The obtained CA was characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), scanning electron microscope (SEM) and X-ray diffraction. FTIR and NMR analysis proved the replacement of free OH (hydroxyl) groups by acetyl groups. The degree of substitution (DS) showed the acetylation capability of cellulose extracted from CT and SB as well. The cellulose diameter and its crystallinity index were measured by SEM and X-ray diffraction, respectively. Furthermore, the thermal gravimetric analysis showed that CA extracted from CT and SB was thermal resistance. Therefore, CT and SB could be potential alternative resources for CA production using the mentioned method.


Author(s):  
Pravir Kumar ◽  
Katerina Skotnicova ◽  
Ashis Mallick ◽  
Manoj Gupta ◽  
Tomas Cegan ◽  
...  

The present study investigated the effects of alloying and nano-reinforcement on the mechanical properties (microhardness, tensile strength, and compressive strength) of Mg-based alloys and composites. Pure Mg, Mg-3Sn alloy, and Mg-3Sn+0.2GNP alloy-nanocomposite were synthesized by powder metallurgy followed by hot extrusion. The microstructural characteristics of the bulk extruded samples were explored using X-ray diffraction, field-emission scanning electron microscopy, and optical microscopy and their mechanical properties were compared. The microhardness, tensile strength, and compressive strength of the Mg-3Sn alloy improved when compared to those of monolithic Mg sample and further improvements were displayed by Mg-3Sn+0.2GNP alloy-nanocomposite. No significant change in the compressive strain to failure was observed in both the alloy and the alloy-nanocomposite with respect to that of the pure Mg sample. However, an enhanced tensile strain to failure was displayed by both the alloy and the alloy-nanocomposite.


2021 ◽  
Author(s):  
Balaji Ayyanar Chninnappan ◽  
K. Marimuthu ◽  
C. Bharathiraj ◽  
B. Gayathri ◽  
S. K. Pradep Mohan

Abstract Samanea saman (SS) flower particulates were filled in Polylactic acid (PLA) composites were fabricated with different 0, 10, and 20 wt. % through the injection molding process. The elemental composition and morphology of SS PLA composites were studied through FESEM and Energy Dispersive X-ray analysis. Thermal stability of the SS PLA composites specimens was carried out through Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC). Crystal orientations studied through X-Ray Diffraction (XRD) showed the presence of the orthorhombic SS particulates. The properties of the composites were investigated such as tensile strength, compressive strength, flexural strength, and Shore D Hardness. It was found that 20 wt. % of SS filled PLA composites has a superior tensile strength of 43.76 MPa, the compression strength of 37.94 MPa, the flexural strength of 72.47 MPa, and Shore D Hardness of 80.1 SHN than pure PLA. SS particulates-filled PLA composites would be used for low-strength applications.


2019 ◽  
Vol 5 (2) ◽  
pp. 169-176
Author(s):  
Asep Hadian Hadinata ◽  
Engela Evy Ernawati ◽  
Agnes Rezky Siahaan

Rice husk is an agricultural waste that contains cellulose. Risce husk’s cellulose can be converted to cellulose acetate. Cellulose acetate (CA) is widely used as membrane’s material for pervaporation. This material has high swelling degree that can influence its performance. The membrane’s performance can be improved by addition of minerals such zeolite and alumina. The purpose of this study was to determine the characteristics and the best composition of CA/NaA zeolite/alumina composite membrane (CA/Na/Al) for pervaporation of Vetiver oil. Methods that has been done were acetylation of rice husk’s cellulose, synthesis of composite membrane, characterization, and pervaporation of Vetiver oil. Focused characteristics of membrane were its swelling degree, mechanical strength, and its morphology. Composite CA/Na/Al membrane has lower swelling degree than CA/NaA membrane because the existence of alumina that fill CA matrix. The optimum mechanical strength was gained by adding 2% alumina to membrane. But, composite CA/Na/Al 3% membrane was the best composition due to its performance. Membrane performance including its flux and the percentage of vetiverol gained (Cp), with flux value 367.83 g.m-2.h-1 and Cp value 15.584%.


Sign in / Sign up

Export Citation Format

Share Document