Diametral Tensile Strength and Reflectance Evaluation of Dental Composite Prototype Using Modified Dental Composite Procedures

2019 ◽  
Vol 829 ◽  
pp. 100-107
Author(s):  
Renny Febrida ◽  
Wafa Sahilah ◽  
Sashya Adriana ◽  
Nina Djustiana ◽  
Elin Karlina ◽  
...  

Dental composite is used to restore disease or fracture tooth structure and modify tooth shape as well as color in order to enhance the aesthetic properties. This restoration should possess sufficient strength and translucency at the same time. Diametral tensile strength and reflectance of dental composite were related to the selection of three main components; filler, coupling agent and resin matrix. Quarsi-experimental. This study was a follow-up study whereby the filler silica-zirconia-alumina system were synthesized by sol-gel technique with precursors composition ratio 70:20:10. The surface of subsequent filler were modified by 3-mercaptoppropyltrimethoxysilane (MPTMS) and aminopropyltrimethoxysilane (APTES) then becoming group A and B respectively. In order to prepared the dental composite, acetone was used to reduce the viscosity of Bisphenol A Glycidyl Methacrylate (BisGMA) thus enable introducing more content of filler into resin matrix. Phase of crystalline and particle morphology were identified by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) consecutively. Universal Testing Machine (Lloyd) with crosshead speed 1mm/min was used to evaluate diametral tensile strength between two samples group. Dental composite contain filler-MPTMS coated were continuing tested to measure the reflectance values. Disc of each samples were prepared (n=3) with different thickness (1.5 mm and 3 mm) and same diameter (20 mm). Both diametral tensile strength and reflectance evaluation data were analysis by t-test unpaired. The result showed no statistically significant differences in diametral tensile strength between group A (47,6548 MPa) and B (41,4265 MPa). Reflectance evaluation also exhibited no statistically significant differences in dental composite contain filler-coated MPTMS with different thickness. Dental composite prototype based on diametral tensile strength and reflectance evaluation were potential to be used as alternative dental restoration.

2021 ◽  
Vol 9 (02) ◽  
pp. 104-110
Author(s):  
Akshay Punjabi ◽  
◽  
Rahul Rao ◽  
Ashish K. Jain ◽  
Meenakshi Verma ◽  
...  

Context:The quality of light curing units can profoundly influence mechanical properties of dental composite materials. Aim: To compare effect of Woodpecker RTA Mini-S and Elipar Deep Cure-L curing units onmechanical properties (compressive strength, diametral tensile strength and microhardness) of Filtek Bulk-Fill. Methods and Materials: A total of 32 samples of Filtek Bulk Fill composite were divided into 2 equal groups (n=16). 12 samples in each group were fabricated using a tooth shaped mold and 4 in circular rings to test compressive strength, microhardness and diametral tensile strength, respectively. Theblocks were evaluated for the above parameters using Universal Testing Machine and Vickers Microhardness Tester.Independent sample-t test was used in this study (p< 0.05). Results: The results of this study showed that the group of composites cured using Elipar Deep Cure-L curing unit showed better mechanical properties and the difference between the groups was statistically significant for compressive strength and diametral tensile strength (p < 0.05) Conclusion: It was concluded that a curing unit of higher intensity and quality of output used in conjugation with bulk fill composites are likely to give better results.


2019 ◽  
Vol 829 ◽  
pp. 81-86
Author(s):  
Elin Karlina ◽  
Kosterman Usri ◽  
Renny Febrida ◽  
Camellia Panatarani ◽  
I Made Joni ◽  
...  

Recently, ceramic material has become a main object of scientific interest especially in dental material. The advance of dental materials technology has led to use of zirconia-based ceramics for composite filler. In this study, composite filler has been synthesized from natural zircon sand through geopolymerization method. Composite prototype were made with different filler volume to evaluate mechanical properties including hardness number and diametral tensile strength. Samples divided into two groups with 50 wt% filler volume (group A) and 75 wt% filler volume (group B) which 3 samples for each group. The surface micro hardness of each group tested by Leco M-400-H1 vickers microhardness testing machine and for diametral tensile strength tested using universal testing machine (Lloyd) with crosshead speed of 1,0 ± 0,25 mm/min. The data were analyzed using independent sample t-test. The results showed that the average of hardness number on group A was 13,8 VHN while for group B was 24,1 VHN. The average of diametral tensile strength for group A was 20,461 MPa and 27,689 MPa for group B. Statistical result showed that the value (P<0,05). The conclusion, there is a signifficant difference on the result of hardness test between group A (50 wt% filler volume) and group B (75 wt% filler volume) and also on diametral tensile strength test.


2013 ◽  
Vol 14 (1) ◽  
pp. 84-89
Author(s):  
K Venkata Srikanth ◽  
Surendra Nath Garapati ◽  
Priyadarshini LNU ◽  
Piyush Raturi ◽  
Dinesh Shetty

ABSTRACT Background Composites always remained the target of discussion due to lot of controversies around it. Mechanical properties are one of them. With the introduction of new technology and emergence of various composites which combine superior strength and polish retention, nanocomposites have led to a new spark in the dentistry. A recent curing unit LED with various curing modes claims to produce higher degree of conversion. The aim of this study was to evaluate the diametral tensile strength and flexural strength of nanocomposite, hybrid and minifill composites cured with different light sources (QTH vs LED). Materials and methods Seventy-two samples were prepared using different specially fabricated teflon molds, 24 samples of each composite were prepared for the diametral tensile strength (ADA specification no. 27) and the flexural strength (ISO 4049) of the 12 samples, six were cured with LED (Soft Start curing profile) and other six with QTH curing light and tested on a universal testing machine. Results The nanocomposite had highest diametral tensile strength and flexural strength which were equivalent to the hybrid composite and superior than the minifill composite. Conclusion With the combination of superior esthetics and other optimized physical properties, this novel nanocomposite system would be useful for all posterior and anterior applications. How to cite this article Garapati SN, Priyadarshini, Raturi P, Shetty D, Srikanth KV. An in vitro Evaluation of Diametral Tensile Strength and Flexural Strength of Nanocomposite vs Hybrid and Minifill Composites cured with Different Light Sources (QTH vs LED). J Contemp Dent Pract 2013;14(1):84-89.


2019 ◽  
Vol 829 ◽  
pp. 87-92
Author(s):  
Hutomo Mandala Hartoyo ◽  
Veni Takarini ◽  
Renny Febrida ◽  
Elin Karlina ◽  
I Made Joni

The widely use of dental composite triggers a lot of research to synthesize composite made from natural sources. One of the natural sources that could be used as a filler of composite is natural zircon sand from Indonesia. The physical properties of dental composite, such as Diametral Tensile Strength (DTS) and hardness could be affected by the filler of the composite. The aim of this research is to determine the value of diametral tensile strength and hardness of prototype composite with natural zircon sand-based filler by using geopolymerization method with various coupling agents. The procedures began from synthesizing Zirconia-Alumina-Silica filler from natural zircon sand using geopolymerization method with two different coupling agents, 3-mercapto propyltrimethoxysilane (3-MPTS) and 3-aminopropyltriethoxysilane (3-APTS), which then mixed with resin matrix to form composite resin, some of the samples were then subjected to a DTS test using Lloyd Universal Testing Machine (5.6 N initial load) until a crack/fracture was formed while some of them was subjected to a hardness test using Vickers Hardness Tester. The results showed the average DTS of dental composite using MPTS coupling agent was 13.78 MPa, while the average DTS of dental composite using APTS coupling agent was 8.90 MPa, and the average hardness result of dental composite coated by 3-MPTS was higher (20.68 VHN) than composite coated by 3-APTS (18.02 VHN). This difference could be affected by filler particle composition, filler surface area and also coupling agent variation. In conclusion, the tensile strength of the prototype resin composite sample group with the natural zircon sand filler using MPTS coupling agent was higher than the APTS coupling agent group.


2004 ◽  
Vol 12 (4) ◽  
pp. 344-348 ◽  
Author(s):  
Eduardo Bresciani ◽  
Terezinha de Jesus Esteves Barata ◽  
Ticiane Cestari Fagundes ◽  
Akimi Adachi ◽  
Marina Martins Terrin ◽  
...  

The aim of this study was to compare, in different periods of time, the compressive and diametral tensile strength of a traditional high viscous glass ionomer cement: Fuji IX (GC Corporation), with two new Brazilian GIC's: Vitro-Molar (DFL) and Bioglass R (Biodinamica), all indicated for the Atraumatic Restorative Treatment (ART) technique. Fifteen disk specimens (6.0mm diameter x 3.0mm height) for the diametral tensile strength (DTS) test and fifteen cylindrical specimens (6.0mm diameter x 12.0mm height) for the compressive strength (CS) test were made of each GIC. Specimens were stored in deionized water at 37º C and 100% of humidity in a stove until testing. Five specimens of each GIC were submitted to CS and DTS test in each period, namely 1 hour, 24 hours and 7 days. The specimens were tested in a testing machine (Emic) at a crosshead speed of 1.0mm/min for CS and 0.5mm/min for the DTS test until failure occurred. The data were submitted to two-way ANOVA and Tukey tests (alpha=0.05). The mean CS values ranged from 42.03 to 155.47MPa and means DTS from 5.54 to 13.72 MPa, with test periods from 1h to 7 days. The CS and DTS tests showed no statistically significant difference between Fuji IX and Vitro Molar, except for CS test at 1-hour period. Bioglass R had lowest mean value for CS of the cements tested. In DTS test Bioglass R presented no statistically significant differences when compared with all others tested GICs at 1-hour period and Bioglass R presented no difference at 24-hour and 7-day periods when compared to Vitro-Molar. Further studies to investigate other physical properties such as fracture toughness and wear resistance, as well as chemical composition and biocompatibility, are now needed to better understand the properties of these new Brazilian GIC's.


2005 ◽  
Vol 19 (4) ◽  
pp. 267-271 ◽  
Author(s):  
Renata Garcia Fonseca ◽  
Juliana Gomes dos Santos ◽  
Gelson Luis Adabo

In metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. The effect of the lack of photoactivation on the strength of these cements has been rarely studied. This study evaluated the influence of activation modes on the diametral tensile strength (DTS) of dual-curing resin cements. Base and catalyst pastes of Panavia F, Variolink II, Scotchbond Resin Cement, Rely X and Enforce were mixed and inserted into cylindrical metal moulds (4 x 2 mm). Cements were either: 1) not exposed to light (chemical activation = self-cured groups) or 2) photoactivated through mylar strips (chemical and photo-activation = dual-cured groups) (n = 10). After a 24 h storage in 37ºC distilled water, specimens were subjected to compressive load in a testing machine. A self-curing resin cement (Cement-It) and a zinc phosphate cement served as controls. Comparative analyses were performed: 1) between the activation modes for each dual-curing resin cement, using Student’s t test; 2) among the self-cured groups of the dual-curing resin cements and the control groups, using one-way ANOVA and Tukey’s test (alpha = 0.05). The dual-cured groups of Scotchbond Resin Cement (53.3 MPa), Variolink II (48.4 MPa) and Rely X (51.6 MPa) showed higher DTS than that of self-cured groups (44.6, 40.4 and 44.5 MPa respectively) (p < 0.05). For Enforce (48.5 and 47.8 MPa) and Panavia F (44.0 and 43.3 MPa), no significant difference was found between the activation modes (p > 0.05). The self-cured groups of all the dual-curing resin cements presented statistically the same DTS as that of Cement-It (44.1 MPa) (p > 0.05), and higher DTS than that of zinc phosphate (4.2 MPa). Scotchbond Resin Cement, Variolink II and Rely X depended on photoactivation to achieve maximum DTS. In the absence of light, all the dual-curing resin cements presented higher DTS than that of zinc phosphate and statistically the same as that of Cement-It (p > 0.05).


2020 ◽  
Vol 19 ◽  
pp. e208204
Author(s):  
Maria Helena Rossy Borges ◽  
Carmen Gilda Tavares Dias ◽  
Cristiane de Melo Alencar ◽  
Cecy Martins Silva ◽  
Renata Antunes Esteves

Aim: The purpose of this study was to compare the microhardness, diametral tensile strength, compressive strength and the rheological properties of self-adhesive versus conventional resin cements. Methods: Specimens of a conventional (RelyX ARC) and 3 self-adhesive (RelyX U200, Maxcem Elite, Bifix SE) types of resin cements were prepared. The Knoop test was used to assess the microhardness, using a Microhardness Tester FM 700. For the diametral tensile strength test, a tensile strength was applied at a speed of 0.6 mm/minute. A universal testing machine was used for the analysis of compressive strength and a thermo-controlled oscillating rheometer was used for the Rheology test. One-way ANOVA and Tukey’s test (α=0.05) were used for data analysis. Results: According to microhardness analysis, all the cements were statistically similar (p>0.05), except for Maxcem that presented lower hardness compared with the other cements in relation to the top surface (p<0.05). In the diametral tensile strength test, Relyx U200 and RelyX ARC cements were statistically similar (p>0.05), presented higher value when compared to the Maxcem and Bifix cements (p<0.05). The compressive strength of RelyX ARC and Maxcem Elite cements was statistically higher than RelyX U200 and Bifix cements (p<0.05). Regarding the rheology test, Maxcem Elite and RelyX ARC cements showed a high modulus of elasticity. Conclusions: The self-adhesive cements presented poorer mechanical properties than conventional resin cement. Chemical structure and types of monomers employed interfere directly in the mechanical properties of resin cements.


2018 ◽  
Vol 32 (3) ◽  
pp. 127 ◽  
Author(s):  
Gabriela De Souza Balbinot ◽  
Isadora Martini Garcia ◽  
Susana Maria Werner Samuel ◽  
Fabricio Mezzomo Collares ◽  
Vicente Castelo Branco Leitune

OBJECTIVE: The aim of this study was to evaluate the influence of octacalcium phosphate (OCP) addition to conventional glass ionomer cement (GIC).METHODOLOGY: A commercial glass ionomer cement (Vidrion R – S.S. White Artigos Dentários Ltda – Rio de Janeiro, Brazil) was used in this study. OCP was added to powder in 1.5 and 3 wt%. GIC without OCP addition was used as control. Specimens were produced to evaluate radiopacity, setting time and diametral tensile strength of cements. Radiopacity was assessed by phosphor plate system with alluminium step-wedge for comparison. For setting time determination, Gilmore needle (100 g) was used to determine final setting reaction. Diametral tensile strength was measured in a universal testing machine. Data were analyzed by one-way ANOVA at a significance level of 95%.RESULTS: Results showed no statistically significant difference in tested properties with octacalcium phosphate addition in any concentration.CONCLUSION: OCP addition to GIC did not influence materials properties.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Mostafa Seifan ◽  
Zahra Sarabadani ◽  
Aydin Berenjian

Dental restorative materials suffer from major drawbacks, namely fracture and shrinkage, which result in failure and require restoration and replacement. There are different methods to address these issues, such as increasing the filler load or changing the resin matrix of the composite. In the present work, we introduce a new viable process to heal the generated cracks with the aid of urease enzyme. In this system, urease breaks down the salivary urea which later binds with calcium to form calcium carbonate (CaCO3). The formation of insoluble CaCO3 fills any resultant fracture or shrinkage from the dental composure hardening step. The healing process and the formation of CaCO3 within dental composites were successfully confirmed by optical microscope, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDS) methods. This research demonstrates a new protocol to increase the service life of dental restoration composites in the near future.


2018 ◽  
Vol 16 (1) ◽  
pp. 905-911 ◽  
Author(s):  
Kinga Bociong ◽  
Agata Szczesio ◽  
Michal Krasowski ◽  
Jerzy Sokolowski

AbstractAim of the study was to evaluate the influence of filler amounts on mechanical properties and contraction stress of light-curing experimental composite. Hardness, flexural strength, diametral tensile strength of material filled with 40, 50 or 60 wt. % of silanized silica were tested. The contraction stress was measured after 24 h by means of photoelastic study. The addition of 40-60 wt. % filler to composite caused significant increase in hardness, Young’s modulus and flexural strength. The DTS, after incorporating filler into polymer matrix, was valued at ~26 MPa. The composite containing 40 wt. % of filler demonstrated significantly lower contraction stress in comparison to neat resin and filled > 50 wt. % of silica.


Sign in / Sign up

Export Citation Format

Share Document