Crude Fucoidan Activity Extracted from Sargassum sp. as Mycotoxin (T-2) Binder

2020 ◽  
Vol 840 ◽  
pp. 193-198
Author(s):  
Marta Yusfita Sari ◽  
Endang Saefudin ◽  
Fitri Fagatella

Fucoidan is a sulfated polysaccharide which is mainly found in brown seaweed like Sargassum sp. In this study, fucoidan was extracted with two distinct methods, one was using 0.1 N HCl (Fucoidan A) and the other 0.1 N H3PO4 (Fucoidan B). The yield of HCl extraction was respectively 7.50% and H3PO4 extraction 7.02%. Characterization of crude fucoidan was carried out through fourier-transform infrared spectroscopy (FTIR), followed by total carbohydrate and total sulfate level measurement. Crude fucoidan was then used to determine its binding activity against Trichothecenes T-2 toxin. Quantitative analysis of 50 ug/ml T-2 toxin binding capacity shows an efficiency of 59.52% at pH 3.0 and 58.37% at pH 6.8 for crude fucoidan A. As for crude fucoidan B, efficiency of T-2 toxin binding capacity has value of 58.12% at pH 3.0 and 57.33% at pH 6.8. Meanwhile, Commercial crude fucoidan extract from Fucus vesiculosus sp. was used as control for T-2 toxin binding capacity analysis with efficiency of 57.31% at pH 3.0 and 56.64% at pH 6.8. Therefore, fucoidan from Sargassum sp. can be utilized better as mycotoxin especially T-2 toxin binder than from Fucus vesiculosus sp. through efficiency result of fucoidan binding capacity.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 714
Author(s):  
Enver Keleszade ◽  
Michael Patterson ◽  
Steven Trangmar ◽  
Kieran J. Guinan ◽  
Adele Costabile

Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.


2009 ◽  
Vol 16 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Sermin Tetik ◽  
Kurtulus Kaya ◽  
M. Demir ◽  
Emel Eksioglu-Demiralp ◽  
Turay Yardimci

Aim: Proteins are sensitive biomarkers of human diease condition associated with oxidative stress. Alteration of protein structures by oxidants may result in partial or complete loss of protein functions. We have investigated the effect of structural modifications induced by metal ion catalyzed oxidation of fibrinogen on its binding capacity to glycoprotein IIb/IIIa (GpIIb/IIIa) and human platelets. Methods: We identified and quantified of binding capacity of native and oxidized fibrinogen to its receptor in vitro by flow cytometer. Dityrosine formation on oxidized fibrinogen were detected spectrophotometrically. Elevated degradation products of fibrinogen after oxidation were revealed in the HPLC analysis. The native and oxidized fibrinogen were analyzed on mass spectrum upon digestion with tyripsin. Results: Oxidatively modified fibrinogen showed less binding activity than native fibrinogen to GpIIb/IIIa coated micro beads and human platelets whereas slightly higher binding capaticity to ADP induced stimulated platelets. Formation of dityrosines in the amino acid side chains of fibrinogen were observed upon oxidation. Decreased binding capacity of oxidized fibrinogen correlated with intensities of dityrosine formation. Oxidized fibrinogen had more ion-mass intensities at higher than native fibrinogen. Clinical implications: Important point is decreased of binding capacity of the oxidized fibrinogen to own receptor. The decreased rate of binding, leading to effect in the diseases of clot formation may acount for the association between oxidation of fibrinogen and the incidence of effect in human diseases.


2010 ◽  
Vol 426 (2) ◽  
pp. 197-203 ◽  
Author(s):  
Ana R. Correia ◽  
Tao Wang ◽  
Elizabeth A. Craig ◽  
Cláudio M. Gomes

Frataxin is a highly conserved mitochondrial protein whose deficiency in humans results in Friedreich's ataxia (FRDA), an autosomal recessive disorder characterized by progressive ataxia and cardiomyopathy. Although its cellular function is still not fully clear, the fact that frataxin plays a crucial role in Fe–S assembly on the scaffold protein Isu is well accepted. In the present paper, we report the characterization of eight frataxin variants having alterations on two putative functional regions: the α1/β1 acidic ridge and the conserved β-sheet surface. We report that frataxin iron-binding capacity is quite robust: even when five of the most conserved residues from the putative iron-binding region are altered, at least two iron atoms per monomer can be bound, although with decreased affinity. Furthermore, we conclude that the acidic ridge is designed to favour function over stability. The negative charges have a functional role, but at the same time significantly impair frataxin's stability. Removing five of those charges results in a thermal stabilization of ~24 °C and reduces the inherent conformational plasticity. Alterations on the conserved β-sheet residues have only a modest impact on the protein stability, highlighting the functional importance of residues 122–124.


2016 ◽  
Vol 28 (5) ◽  
pp. 608 ◽  
Author(s):  
Wittaya Chaiwangyen ◽  
Stephanie Ospina-Prieto ◽  
Diana M. Morales-Prieto ◽  
Francisco Lazaro Pereira de Sousa ◽  
Jana Pastuschek ◽  
...  

Leukaemia inhibitory factor (LIF) and oncostatin M (OSM) are pleiotropic cytokines present at the implantation site that are important for the normal development of human pregnancy. These cytokines share the cell membrane receptor subunit gp130, resulting in similar functions. The aim of this study was to compare the response to LIF and OSM in several trophoblast models with particular regard to intracellular mechanisms and invasion. Four trophoblast cell lines with different characteristics were used: HTR-8/SVneo, JEG-3, ACH-3P and AC1-M59 cells. Cells were incubated with LIF, OSM (both at 10 ng mL–1) and the signal transducer and activator of transcription (STAT) 3 inhibitor S3I-201 (200 µM). Expression and phosphorylation of STAT3 (tyr705) and extracellular regulated kinase (ERK) 1/2 (thr202/204) and the STAT3 DNA-binding capacity were analysed by Western blotting and DNA-binding assays, respectively. Cell viability and invasiveness were assessed by the methylthiazole tetrazolium salt (MTS) and Matrigel assays. Enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 was investigated by zymography. OSM and LIF triggered phosphorylation of STAT3 and ERK1/2, followed by a significant increase in STAT3 DNA-binding activity in all tested cell lines. Stimulation with LIF but not OSM significantly enhanced invasion of ACH-3P and JEG-3 cells, but not HTR-8/SVneo or AC1-M59 cells. Similarly, STAT3 inhibition significantly decreased the invasiveness of only ACH-3P and JEG-3 cells concomitant with decreases in secreted MMP-2 and MMP-9. OSM shares with LIF the capacity to activate ERK1/2 and STAT3 pathways in all cell lines tested, but their resulting effects are dependent on cell type. This suggests that LIF and OSM may partially substitute for each other in case of deficiencies or therapeutic interventions.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 90 ◽  
Author(s):  
Ruslan I. Al-Shekhadat ◽  
Ksenia S. Lopushanskaya ◽  
Álvaro Segura ◽  
José María Gutiérrez ◽  
Juan J. Calvete ◽  
...  

The common European adder, Vipera berus berus, is a medically relevant species, which is widely distributed in Russia and thus, is responsible for most snakebite accidents in Russia. We have investigated the toxic and enzymatic activities and have determined the proteomic composition of its venom. Phospholipases A2 (PLA2, 25.3% of the venom proteome), serine proteinases (SVSP, 16.2%), metalloproteinases (SVMP, 17.2%), vasoactive peptides (bradykinin-potentiating peptides (BPPs), 9.5% and C-type natriuretic peptides (C-NAP, 7.8%), cysteine-rich secretory protein (CRISP, 8%) and L-amino acid oxidase (LAO, 7.3%) represent the major toxin classes found in V. b. berus (Russia) venom. This study was also designed to assess the in vivo and in vitro preclinical efficacy of the Russian Microgen antivenom in neutralizing the main effects of V. b. berus venom. The results show that this antivenom is capable of neutralizing the lethal, hemorrhagic and PLA2 activities. Third-generation antivenomics was applied to quantify the toxin-recognition landscape and the maximal binding capacity of the antivenom for each component of the venom. The antivenomics analysis revealed that 6.24% of the anti-V. b. berus F(ab’)2 molecules fraction are toxin-binding antibodies, 60% of which represent clinically relevant antivenom molecules.


Author(s):  
Rajasekar T. ◽  
Mary Shamya A. ◽  
Jerrine Joseph

Objective: Phytochemical is naturally present in the seaweeds which biologically play a significant role. The intention of this study was designed to screen the phytochemical constituents and antimicrobial potential of selected seaweed collected from Rameshwaram and Tuticorin Southern coast of India.Methods: The present study investigated the presence of phytochemical constituents and also total phenol, total carbohydrate and total protein quantity of the brown seaweed. Dictyopteris delicatula, Padina gymnospora, Acanthophora spicifera, Portieria hornemannii and Ulva faciata were extracted with solvents having different polarities like methanol, ethanol, chloroform and water and screened for the phytochemical constituents, total phenol, total carbohydrate, total protein and DPPH with standard procedure. The antibacterial activities of the seaweeds were examined by agar well diffusion method.Results: Among the five seaweeds, U. faciata showed the maximum number of active constituents in the methanol extract likewise P. gymnospora was found to have a number of diligent compounds in ethanol extract. A. spicifera showed minimum compounds in ethanol as well as chloroform extract. Moreover A. spicifera, P. hornemannii have shown the superior quantity of protein and carbohydrate when compared to other species. The scavenging activity of methanol extracts at 5 mg/ml concentration P. hornemannii shows 18.2% and A. spicifera possess 17.1%. In the antibacterial activity, methanol extracts of all the seaweed showed a potential inhibitory activity against B. cereus and P. aeruginosa compared to other pathogens.Conclusion: The crude extract of seaweed manifest preferable antimicrobial and antioxidant activities, hence in the future, it would be good if it is further taken for treatment of human diseases or as new antimicrobial agents to replace synthetic antimicrobial agents.


Blood ◽  
2011 ◽  
Vol 118 (8) ◽  
pp. 2313-2321 ◽  
Author(s):  
Anthony J. Courey ◽  
Jeffrey C. Horowitz ◽  
Kevin K. Kim ◽  
Timothy J. Koh ◽  
Margaret L. Novak ◽  
...  

Abstract Plasminogen activator inhibitor-1 (PAI-1) is increased in the lungs of patients with pulmonary fibrosis, and animal studies have shown that experimental manipulations of PAI-1 levels directly influence the extent of scarring that follows lung injury. PAI-1 has 2 known properties that could potentiate fibrosis, namely an antiprotease activity that inhibits the generation of plasmin, and a vitronectin-binding function that interferes with cell adhesion to this extracellular matrix protein. To determine the relative importance of each PAI-1 function in lung fibrogenesis, we administered mutant PAI-1 proteins that possessed either intact antiprotease or vitronectin-binding activity to bleomycin-injured mice genetically deficient in PAI-1. We found that the vitronectin-binding capacity of PAI-1 was the primary determinant required for its ability to exacerbate lung scarring induced by intratracheal bleomycin administration. The critical role of the vitronectin-binding function of PAI-1 in fibrosis was confirmed in the bleomycin model using mice genetically modified to express the mutant PAI-1 proteins. We conclude that the vitronectin-binding function of PAI-1 is necessary and sufficient in its ability to exacerbate fibrotic processes in the lung.


Sign in / Sign up

Export Citation Format

Share Document