Effects of Oil Palm Empty Fruit Bunch and Magnesium Oxide Volume Fraction on Mechanical Characteristics of Railway Brake Block Composite Material

2020 ◽  
Vol 867 ◽  
pp. 91-97
Author(s):  
Sutikno ◽  
Wajan Berata ◽  
Kussuma H.S. Fendy ◽  
Ahmat Safaat

Railway brake block is one of the most important components of the braking system of a railway vehicle. Materials for railway brake blocks are commonly made from metal or composite. The metallic brake blocks have some disadvantages that are heavy, low wear-resistant and has potential in generating a spark. While the composite brake blocks do not have those disadvantages. Natural fiber from oil palm empty fruit bunches as the waste from the production of palm oil can be used as a composite constituent. This composite brake blocks made from oil palm empty fruit bunches as reinforcement, phenol resin as matrix, and alumina, magnesium oxide and iron powder as a friction modifier. Density, hardness, coefficient of friction, compressive strength and flexural strength tests were carried out to determine the mechanical characteristic of the composite railway brake block material. The railway brake block test results consist of the density of 1.96 g/cm3, the hardness of 57.6 HRB, coefficient of friction of 0.43, the compressive strength of 37.1 MPa, and flexural strength of 33 MPa. There are three samples of volume fraction combination with 20% of oil palm empty fruit bunch in sample 1, 15% oil palm empty fruit bunch in sample 2 and 10% oil palm empty fruit bunch in sample 3. Percentage of MgO is adjusted to compensate the volume fraction of oil palm empty fruit bunch in the sample. Sample test results show that composite with volume fraction 10% of oil palm empty fruit bunch, phenolic resin of 30%, Al2O3 of 25%, MgO of 20%, iron powder of 15% has better mechanical properties for the alternative composite railway brake block material as compared to the other two.

2018 ◽  
Vol 7 (4.20) ◽  
pp. 449
Author(s):  
Nada Mahdi Fawzi Aljalawi ◽  
Haider M.K. Al-Jelawy

This work focuses on studying the mechanical characteristics of carbon fibre reinforced concrete, containing a different percentage of fibre. This work was carried out using several tests. These tests were hardened density, compressive strength, flexural strength . Tests were performed for specimens at ages of (7,28,60) days. The test results indicated that the inclusion of fibre in the reference concrete mixes did not affect the compressive strength significantly, while the flexural strength was improved. Test results indicated that the flexural strength of (0.75%) carbon fibre concrete specimens are twice that of the reference specimens in age of 28 days . The percentage of increasing the flexural strength for carbon mixes containing fibre by volume fraction of (0.5%, 0.75%) were (23%, 27%) respectively at age of 28 days. 


2017 ◽  
Vol 25 (3) ◽  
pp. 161-170
Author(s):  
Henny Lydiasari ◽  
Ari Yusman Manalu ◽  
Rahmi Karolina

The potency of oil palm empty fruit bunches (OPEFB) fibers as one of the by-products of processing oil palm is increasing significantly so that proper management is needed in reducing environmental impact. One of the utilization of OPEFB fibers is as a substitution material in construction which usually the material is derived from non-renewable mining materials so that the number is increasingly limited. Therefore, it is necessary to study to know the performance of OPEFB fiber in making construction products especially concrete. In this case, the experiment was conducted using experimental method with variation of fiber addition by 0%, 10%, 15%, 20%, 25%, and 30%. Each specimen was tested by weight, slump value, compressive strength, tensile strength, elasticity and crack length. As the results, the variation of fibers addition by 10%, decrease of slump value is 7%, concrete weight is 3% and crack length is 8% while increase of the compressive strength is 2.7% and the modulus of elasticity is 33.3% but its tensile strength decreased insignificantly by 0.05% . Furthermore, the addition of fibers above 10% to 30% decreased compressive strength is still below 10% and tensile strength below 2% while the weight of concrete, slump value and crack length decreased. Therefore, the addition of 10% can replace the performance of concrete without fiber but the addition of above 10% can still be used on non-structural concrete.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2014 ◽  
Vol 894 ◽  
pp. 55-59
Author(s):  
Abdoullah Namdar ◽  
Fadzil Mat Yahaya ◽  
Kok Jun Jie ◽  
Lim Yen Ping

One of waste agriculture materials is oil palm shell ash. It has been producing in high quantity in palm oil mill, and for storage of that an investment requires. In this paper, an attempt has been made to analysis effect of oil palm shell ash on compressive and flexural strength of cement mortar. The compressive strength and flexural strength of cement mortar has been measured. To improve accuracy of work 50% cement and 50% fine sand has been proposed in cement mortar mix design. The results have been indicated that the effect of OPS ash on flexural and compressive strength of cement mortar is not same. The deflection, load sustainability and time to failure for compressive strength have independent fluctuation of flexural strength. The positive and negative effect of OPS ash on mechanical properties of cement mortar has been observed. The morphology of crack failure has not been investigated. The work can be continued with many waste agriculture materials. Keywords: waste agriculture, deflection, load sustainability, time to failure.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


Author(s):  
Mahadi Mahadi ◽  

This article contains a study report on the manufacturing of bicycle helmet models that use polymeric foam composite materials strengthened by oil palm empty fruit bunch (OPEFB). The test results of mechanical polymeric foam obtain tensile stress (σt) 1.17 MPa, compressive stress (σc) 0.51 MPa, bending stress (σb) 3.94 MPa, modulus of elasticity (E) 37.97 MPa, density ( ρ) 193 (kg / m3). The testing results of thermal conductivity (k) with ASTM C177-04 standard obtain 0.096 W/mK. Aerodynamic simulation is carried out on 5 bicycle helmet models with different variations of air ventilation formations and obtained the M4A model that best met the ergonomic criteria. The simulation results of the M4A helmet model are max 65.668 Pa of air pressure (Pu), 26,8 0C of inner wall temperature (Ti), 11.0724 m/s of air velocity (vi) and 0.89 of drag coefficient (CD). Bicycle helmet manufacturing is carried out by hand lay up method for shell layer and casting mold for liner by using GFRP polymer composite molds. Both layers are made by sandwich method with the composition of the shell layer is 100 grams resin, 15 grams glass fiber and 5 grams catalyst. The composition of the liner layer is 275 grams (50%) of unsaturated Polyester 157 BQTN-EX resin, 27.5 grams (5%) of OPEFB fiber, 247 grams (45%) of Blowing Agent Polyurethane and 27.5 grams (5%) of Methyl Ketone Perokside catalyst (MEKPO). The toughness of the helmet is tested by using a free fall drop test with the standard of Consumer Product Safety Commission (CPSC) with the height of impact 1.5 meters. The free fall drop test results are max 2.02 MPa of the impact stress of the M4A bicycle helmet model (σi) and max 283.77 joules of energy impact (Ei) which is close to the Consumer Product Safety Commission’s (CPSC) standard value of 110 joules.


2019 ◽  
Vol 5 (5) ◽  
pp. 1007-1019 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Ali Raza ◽  
Muhammad Asad Nawaz ◽  
Safi Ur Rehman ◽  
...  

Despite plain cement concrete presenting inferior performance in tension and adverse environmental impacts, it is the most widely used construction material in the world. Consumption of fibers and recycled coarse aggregates (RCA) can add ductility and sustainability to concrete. In this research, two mix series (100%NCA, and 100%RCA) were prepared using four different dosages of GF (0%GF, 0.25%GF, 0.5%GF, and 0.75%GF by volume fraction).  Mechanical properties namely compressive strength, splitting tensile strength, and flexural strength of each concrete mixture was evaluated at the age of 28 days. The results of testing indicated that the addition of GF was very useful in enhancing the split tensile and flexural strength of both RCA and NCA concrete. Compressive strength was not highly sensitive to the addition of GF. The loss in strength that occurred due to the incorporation of RCA was reduced to a large extent upon the inclusion of GF. GF caused significant improvements in the split tensile and flexural strength of RCA concrete. Optimum dosage of GF was determined to be 0.25% for NCA, and 0.5% for RCA concrete respectively, based on the results of combined mechanical performance (MP).


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2612
Author(s):  
Piotr Smarzewski

This study investigates the fracture properties of high performance cementitious composites (HPCC) with four different types of fibres and with volume fraction content 3%. The four fibres are steel hooked end (S), polypropylene crimped (PP), basalt chopped (B), and glass (G) fibres. The tests were carried out in accordance with the RILEM recommendations. In order to examine the fresh properties of HPCC the slump flow tests were performed. Twelve fibre reinforced HPCC beam specimens with notch were cast and tested using central point loading experiments. In addition, experimental tests of the compressive strength and splitting tensile strength were carried out. The test results made it possible to obtain representative fracture parameters, such as the equivalent strengths, residual strengths, and fracture energy of fibre reinforced HPCC. The S fibre specimens showed the best performance in terms of workability, compressive strength, tensile splitting strength, and fracture energy at large deflection. On the other hand, G fibre specimens exhibited the best performance in terms of flexural strength, equivalent flexural strength at higher deflection, and residual flexural strength at lower deflection. In terms of equivalent flexural strength at lower deflection and residual flexural strength at higher deflection, basalt fibre specimens performed the best. On the contrary, polypropylene fibre reinforced beam specimens revealed the highest deflection capacity.


2017 ◽  
Vol 8 (4) ◽  
pp. 392-401 ◽  
Author(s):  
Hassan A.M. Mhamoud ◽  
Jia Yanmin

Purpose This study aims to focus on the resistance to elevated temperatures of up to 700ºC of high-performance concrete (HPC) compared to ordinary Portland concrete (OPC) with regards to mass loss and residual compressive and flexural strength. Design/methodology/approach Two mixtures were developed to test. The first mixture, OPC, was used as the control, and the second mixture was HPC. After 28 days under water (per Chinese standard), the samples were tested for compressive strength and residual strength. Findings The test results showed that at elevated temperatures of up to 500ºC, each mixture experienced mass loss. Below this temperature, the strength and the mass loss did not differ greatly. Originality/value When adding a 10 per cent silica fume, 25 per cent fly, 25 per cent slag to HPC, the compressive strength increased by 17 per cent and enhanced the residual compressive strength. A sharp decrease was observed in the residual flexural strength of HPC when compared to OPC after exposure to temperatures of 700ºC.


Sign in / Sign up

Export Citation Format

Share Document