Amplification Factor for Wood-Concrete Hybrid Structures Based on Dynamic Numerical Simulation

2021 ◽  
Vol 873 ◽  
pp. 65-69
Author(s):  
Yi Hui Huang ◽  
Meng Ting Tsai

Extensive concerns on environmental protection have provoked low-carbon buildings to be the mainstream of building construction worldwide, and wooden structures in this sense outperform other structural forms. Wooden-concrete hybrid structures featuring distinct wooden and concrete stories typically exhibit uneven stiffness distribution along the structure height; in particular, abrupt stiffness changes occur at the wood-concrete transition stories. Therefore, structural designing of such hybrid structures must consider a stiffness amplification effect in the static structural calculation as well as complicated procedures in the dynamic analysis. To determine an appropriate amplification factor for design purpose, this study employed a dynamic numerical approach to determine the displacement response of wooden-concrete hybrid buildings and compared the results with the displacement response obtained from static analyses. According to the results, it is found that the appropriate amplification factor should beα= f (x) = 0.47x + 1.00.αcan be valued 1.94 at 2nd floor, 2.41 at 3rd floor and 2.88 at 4th floor. The results may serve as a reference for seismic designing of wooden-concrete hybrid structures.

2013 ◽  
Vol 49 (2) ◽  
pp. 183-190 ◽  
Author(s):  
J. Milshtein ◽  
E. Gratz ◽  
S. Pati ◽  
A.C. Powell ◽  
U. Pal

The Solid Oxide Membrane (SOM) process for magnesium production involves the direct electrolysis of magnesium oxide for energy efficient and low-carbon magnesium production. In the SOM process, magnesium oxide is dissolved in a molten oxy-fluoride flux. An oxygen-ion-conducting SOM tube, made from yttria stabilized zirconia (YSZ), is submerged in the flux. The operating life of the electrolytic cell can be improved by understanding degradation processes in the YSZ, and one way the YSZ degrades is by yttria diffusion out of the YSZ. By adding small amounts of YF3 to the flux, yttria diffusion can be controlled. The diffusion of yttria into the flux was quantified by determining the yttria concentration profile as a function of immersion time in the flux and distance from the flux-YSZ interface. Yttria concentrations were determined using x-ray spectroscopy. The diffusion process was modeled using a numerical approach with an analytic solution to Fick?s second law. These modeling and experimental methods allowed for the determination of the optimum YF3 concentration in the flux to minimize yttria diffusion and improve membrane stability. Furthermore, the effects of common impurities in magnesium ores, such as calcium oxide, silica, and sodium oxide/sodium peroxide, on YSZ stability are being investigated.


1996 ◽  
Vol 465 ◽  
Author(s):  
G. A. Henshall

ABSTRACTWrought and cast low-carbon steel are candidate materials for the thick (e.g. 10 cm) outer barrier of nuclear waste packages being considered for use in the potential geological repository at Yucca Mountain. Dry oxidation is one potential degradation mode for these materials at the moderately elevated temperatures expected at the container surface, e.g. 323–533 K (50–260 °C). Therefore, numerical predictions of dry oxidation damage have been made based on experimental data for iron and low-carbon steel and the theory of parabolic oxidation. A numerical approach employing the Forward Euler method has been implemented to integrate the parabolic rate law for arbitrary, complex temperature histories. Assuming growth of a defect-free, adherent oxide, the surface penetration of a low-carbon steel barrier following 5000 years of exposure to a severe, but repository-relevant, temperature history is predicted to be only about 0.127 mm, less than 0.13% of the expected container thickness of 10 cm. Allowing the oxide to spall upon reaching a critical thickness increases the predicted metal penetration values, but degradation is still computed to be negligible. Based on these physically-based model calculations, dry oxidation is not expected to significantly degrade the performance of thick, corrosion allowance barriers constructed of low-carbon steel.


Author(s):  
Yasutomo Kaneko ◽  
Kazushi Mori ◽  
Hiroharu Ooyama

Although bladed disks of turbomachinery are nominally designed to be cyclically symmetric (tuned system), the vibration characteristics of all blades on a disk are slightly different due to the manufacturing tolerance, the deviation of the material property, the wear during operation, and so on. These small variations break the cyclic symmetry, and split the eigenvalue pairs. The actual bladed disks with the small variations are referred to a mistuned system. In the forced response of a mistuned bladed disk, the responses of all blades become different, and the response of a certain blade may become extremely large due to the split of the duplicated eigenvalues, the distortion of the vibration modes, and so on. On the other hand, many researchers suggest that the mistuning suppresses the blade flutter, because the complete travelling wave mode is not formed in a disk. In other words, the main conclusions of researches on mistuning are that while mistuning has an undesirable effect on the forced response, it has a beneficial (stabilizing) effect on the blade flutter (the self-excited vibration). Although such mistuning phenomena of bladed disks have been studied since 1980s, almost all studies focused on the amplification factor of the displacement response, and few studies researched the amplification factor of the vibratory stress response. In this study, first, the frequency response analysis of the mistuned simple bladed disk consisting of flat plates is carried out. Comparing the amplification factor of the displacement response with that of the vibratory stress response, the amplification factor expressed by the vibratory stress is studied in detail. Second, the mistuning analysis of the actual bladed disk used in a steam turbine is carried out. From these results, the mistuning effect expressed by the vibratory stress is clarified.


Wear ◽  
2019 ◽  
Vol 426-427 ◽  
pp. 128-136 ◽  
Author(s):  
V. Seriacopi ◽  
S. Mezghani ◽  
S. Crequy ◽  
I.F. Machado ◽  
M. El Mansori ◽  
...  

2020 ◽  
Vol 22 (4) ◽  
pp. 967-974
Author(s):  
S. Dharani Kumar ◽  
S. Sendhil Kumar ◽  
K. Arun Kumar

AbstractVehicle suspension plays a vital role in maintaining the center of gravity to achieve perfect balancing of the vehicle to provide the comfortable ride. While designing the suspension system of automobile, vibration is the main aspect to be considered. This paper aims to analyze the automobile front and rear suspension for a four wheeler using analytical and numerical approach. Existing details of the suspension is collected using the concept of reverse engineering. Natural and forced frequency of the front and rear suspension system is calculated theoretically based on the collected data's. The natural frequency and forced frequency is numerically computed for front and rear suspension. The amplitude of vibration is reduced by replacing the spring material and its forced frequency is reduced by 1.18 % and 1.56 % for front and rear suspension system respectively. This result reveals that low carbon steel has ability to reduce the forcing frequency and can produce comfort ride.


2021 ◽  
Author(s):  
Xueliang Jiang ◽  
Yonghui Qian ◽  
Jiqi Zhang ◽  
Yong Liu ◽  
RiWe Deng ◽  
...  

Abstract Through the shaking table test, Wenchuan wave (WC) was used as the excitation wave of the shaking table test. The vibration was excited in three directions: horizontal (x), vertical (z), and horizontal and vertical (xz) and the dynamic response characteristics of rock slopes was studied. The results show:(1) The acceleration amplification factor of each measuring point of the slope shows a nonlinear increasing trend with the increase of the slope height.The slope changes the frequency spectrum of the loaded seismic wave.The slope has a filtering effect on the high frequency band of the seismic wave.(2) Under the unidirectional cyclic loading of Wenchuan wave, the slope acceleration amplification factor increases with the increase of the peak value of the seismic wave. Under the bi-directional excitation of Wenchuan wave, the slope acceleration amplification coefficient generally decreases with the increase of the peak value of the seismic wave.The slope acceleration amplification factor presents the characteristics of first increasing and then decreasing with the increase of the relative height of the slope.(3) The dynamic displacement response characteristics of the tunnel slope with double-arch tunnel are mainly affected by the seismic wave in the same direction and the peak value of the dynamic displacement response increases with the increase of the seismic wave peak value.(4) The peak dynamic displacement response of the double-arch tunnel slope shows a non-linear change trend with the increase of slope height. The dynamic displacement peak growth rate is slower below the rock interface and the dynamic displacement peak increases rapidly above the interface and Maximum displacement occurred at the top of the slope.


Author(s):  
G. M. Greene ◽  
J. W. Sprys

The present study demonstrates that fracture surfaces appear strikingly different when observed in the transmission electron microscope by replication and in the scanning electron microscope by backscattering and secondary emission. It is important to know what form these differences take because of the limitations of each instrument. Replication is useful for study of surfaces too large for insertion into the S.E.M. and for resolution of fine detail at high magnification with the T.E.M. Scanning microscopy reduces sample preparation time and allows large sections of the actual surface to be viewed.In the present investigation various modes of the S.E.M. along with the transmission mode in the T.E.M. were used to study one area of a fatigue surface of a low carbon steel. Following transmission study of a platinum carbon replica in the T.E.M. and S.E.M. the replica was coated with a gold layer approximately 200A° in thickness to improve electron emission.


Author(s):  
J. Y. Koo ◽  
G. Thomas

High resolution electron microscopy has been shown to give new information on defects(1) and phase transformations in solids (2,3). In a continuing program of lattice fringe imaging of alloys, we have applied this technique to the martensitic transformation in steels in order to characterize the atomic environments near twin, lath and αmartensite boundaries. This paper describes current progress in this program.Figures A and B show lattice image and conventional bright field image of the same area of a duplex Fe/2Si/0.1C steel described elsewhere(4). The microstructure consists of internally twinned martensite (M) embedded in a ferrite matrix (F). Use of the 2-beam tilted illumination technique incorporating a twin reflection produced {110} fringes across the microtwins.


Author(s):  
L. S. Lin ◽  
K. P. Gumz ◽  
A. V. Karg ◽  
C. C. Law

Carbon and temperature effects on carbide formation in the carburized zone of M50NiL are of great importance because they can be used to control surface properties of bearings. A series of homogeneous alloys (with M50NiL as base composition) containing various levels of carbon in the range of 0.15% to 1.5% (in wt.%) and heat treated at temperatures between 650°C to 1100°C were selected for characterizations. Eleven samples were chosen for carbide characterization and chemical analysis and their identifications are listed in Table 1.Five different carbides consisting of M6C, M2C, M7C3 and M23C6 were found in all eleven samples examined as shown in Table 1. M6C carbides (with least carbon) were found to be the major carbide in low carbon alloys (<0.3% C) and their amounts decreased as the carbon content increased. In sample C (0.3% C), most particles (95%) encountered were M6C carbide with a particle sizes range between 0.05 to 0.25 um. The M6C carbide are enriched in both Mo and Fe and have a fee structure with lattice parameter a=1.105 nm (Figure 1).


Author(s):  
M.T. Jahn ◽  
J.C. Yang ◽  
C.M. Wan

4340 Ni-Cr-Mo alloy steel is widely used due to its good combination of strength and toughness. The mechanical property of 4340 steel can be improved by various thermal treatments. The influence of thermomechanical treatment (TMT) has been studied in a low carbon Ni-Cr-Mo steel having chemical composition closed to 4340 steel. TMT of 4340 steel is rarely examined up to now. In this study we obtain good improvement on the mechanical property of 4340 steel by TMT. The mechanism is explained in terms of TEM microstructures4340 (0.39C-1.81Ni-0.93Cr-0.26Mo) steel was austenitized at 950°C for 30 minutes. The TMTed specimen (T) was obtained by forging the specimen continuously as the temperature of the specimen was decreasing from 950°C to 600°C followed by oil quenching to room temperature. The thickness reduction ratio by forging is 40%. The conventional specimen (C) was obtained by quenching the specimen directly into room temperature oil after austenitized at 950°C for 30 minutes. All quenched specimens (T and C) were then tempered at 450, 500, 550, 600 or 650°C for four hours respectively.


Sign in / Sign up

Export Citation Format

Share Document