Determining Heavy Metals and other Elements Concentrations in the Soil at Baquba-Iraq

2021 ◽  
Vol 886 ◽  
pp. 273-280
Author(s):  
Jaafer S. Muhammad ◽  
Kareem Ali Jasim ◽  
Auday H. Shaban

The present study aims to determine and calculate the concentration of some heavy elements (Pb, Hg, Cu, Ni, Fe, Cr, Co and Cd) in addition to the elements (Mg, Na, Ca, CL, K, C, S and SI), which are Possible sources of soil pollution in downtown (Baquba, Canaan, Muhammad Sakran, and Al-Mamal area), Diyala Governorate in Iraq. To achieve this goal, 5 samples of Diyala soil were collected. Soil samples included areas (industrial, residential, agricultural) with an average sample rate for each region with a depth (0-10 cm). After collecting the samples, they were sorted and compressed to prepare them for measurement by dispersive spectroscopy of X-ray energy (EDX) After obtaining the results, they are compared with the global determinants (WHO), and through these results we find that most of the heavy elements of the areas studied are recorded a significant rise for the element (pb), while the rise of (Cd) was recorded in the regions of Baquba and the Al-mameail region area also recorded an increase ( Cr) in the Canaan region, as well as the rise of some elements in the study area because they are residential and industrial areas and the use of fuels will be significant, while others found the lowest concentrations in agricultural areas with good vegetation knowing (Fe) was the lowest concentration in the study area.

2019 ◽  
Vol 35 (11-12) ◽  
pp. 688-702
Author(s):  
Dalia Abdel Moneim Kheirallah ◽  
Lamia Mostafa El-Samad ◽  
El Hassan Mostafa Mokhamer ◽  
Karolin Kamel Abdul-Aziz ◽  
Noura Abdel Haleem Toto

The present study used Pimelia latreillei as a biomonitoring insect for heavy metals soil pollution in a populated industrial area at Zawya Abd El-Qader, Alexandria, Egypt. Comet assay and histological analysis were applied to evaluate the potential risk of heavy metals. X-ray analysis of the soil samples collected from the polluted site revealed significantly increased metal percentages compared with the reference site. Moreover, a significant increase in metal percentages was detected by the X-ray analysis in insect ovaries collected from the polluted site. The Tail DNA length was significantly greater in the insects collected from the polluted site—47.6% compared with 11.4% at the reference site. Pronounced disruptions in oogenesis were observed through histological and ultrastructure investigations in insects collected from the polluted site. The study summarized the potential utility of insect biomonitors in predicting the effect of heavy metals soil pollution on occupational health.


2019 ◽  
Vol 12 (1) ◽  
pp. 248
Author(s):  
Jonghoon Park ◽  
Eunhye Kwon ◽  
Euijin Chung ◽  
Ha Kim ◽  
Batbold Battogtokh ◽  
...  

In this paper, we studied one of the largest coal mines in Mongolia, the Baganuur Coal Mine, in terms of environmental sustainability related to mining practices, with a focus on discharged water and waste sediments. The present quality and potential for future pollution were assessed. Based on World Health Organization and Mongolian guidelines, groundwater pumped from the mining operations could be used for drinking and domestic purposes. In addition, based on the Na absorption ratio, groundwater samples from GW-2 and GW-3 could be used as agriculture water supplies with salinity reduction, or used to grow halophytes as a measure for desertification control and pasture production. All waste soil samples appeared to have a desertification potential. Dust particles smaller than 150 μm comprised more than 80% of soil samples, which had arsenic levels higher than the Mongolian soil pollution standards. In addition, soil collected between coal seams (S-5) showed high sulphur content based on X-ray fluorescence (XRF) and scanning electron microscopy–energy dispersive X-ray (SEM-EDX) spectroscopy analyses, strong potential for producing acid mine drainage in the analysis of pH of net acid generation and net acid production potential, and potential for leaching of metals, such as Co. Therefore, the Baganuur Coal Mine requires soil pollution control measures to mitigate the risks of dust and desertification. In this perspective, mine groundwater could be used to reduce environmental stresses by supporting pasture crops such as halophytes on waste disposal sites, thereby preventing dust issues and desertification. Continuous efforts, including monitoring and enacting environmental management measures, are needed from both the mining company and the government to ensure sustainable mine development.


Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 75
Author(s):  
Rongxi Li ◽  
Yuan Yuan ◽  
Chengwei Li ◽  
Wei Sun ◽  
Meng Yang ◽  
...  

Shanghai is the major city on the north shore of Hangzhou Bay, and the administrative regions adjacent to Hangzhou Bay are the Jinshan district, Fengxian district, and Pudong new area (Nanhui district), which are the main intersection areas of manufacturing, transportation, and agriculture in Shanghai. In this paper, we collected a total of 75 topsoil samples from six different functional areas (agricultural areas (19), roadside areas (10), industrial areas (19), residential areas (14), education areas (6), and woodland areas (7)) in these three administrative regions, and the presence of 10 heavy metals (manganese(Mn), zinc(Zn), chromium(Cr), nickel(Ni), lead(Pb), cobalt(Co), cadmium(Cd), mercury(Hg), copper(Cu), and arsenic(As)) was investigated in each sample. The Nemerow pollution index (NPI), pollution load index (PLI), and potential ecological risk index (PERI) were calculated to assess the soil pollution levels. The hazard quotient (HQ) and carcinogenic risk (CR) assessment models were used to assess the human health risks posed by the concentrations of the heavy metals. The CR and HQ for adults and children in different functional areas descended in the following order: industrial areas > roadside areas > woodland areas > residential areas > education areas > agricultural areas. The HQ of Mn for children in industrial areas was higher than 1, and the risk was within the acceptable range.


Author(s):  
Usman Rilwan ◽  
Auta Abdullahi Abbas ◽  
Hudu Abdulrahman

Absorption of heavy metals through swampy agricultural soils may have serious consequences on human health. Present study determined the levels of Chromium (Cr), Nickel (Ni), Copper (Cu), Zinc (Zn), Arsenic (As), Cadmium (Cd) and Lead (Pb) using X- Ray Spectrometry in 10 swampy agricultural soils. The result of this study revealed that, the heavy metals with their respective concentrations (Cr (278.1), Ni (462.1), Cu (314.1), Zn (502.8), As (13.5), Cd (524.5) and Pb (295.5)) were found in the soil samples in mg/kg. It also pointed out that the concentration of the heavy metals in the all soil samples for all locations in decreasing order was Cd > Zn >Ni > Cu >Pb > Cr >As. The concentration in swampy agricultural soils from Kokona was obviously higher than the safe limit set by the regulatory bodies which may be because of the geological activities in the studied area. Hence, heavy metals accumulation in swampy agricultural soils is a big concern in Kokona where people’s daily meal largely contains rice or rice based products which are mostly cultivated in swampy agricultural soils.


2020 ◽  
Vol 24 (4) ◽  
pp. 66-71
Author(s):  
E.Ya. Muchkina ◽  
S.E. Badmaeva ◽  
I.S. Korotchenko ◽  
K.S. Gorlushkina

The results of analysis of heave metals concentration in soil and subsoil of large urbanized area are presented. The dates of observation from 2014 to 2016 are presented. The 108 soil samples from 12 monitoring areas were analyzed. The distribution of mobile forms of heavy metals in the soil cover within Krasnoyarsk city are considered. The rate of soil pollution was studied. It was discovered soil pollution with Pb, Cu, Ni, Zn, Mn, Cd, Co exceeds maximum acceptable concentration (MAC). Geochemical associations of heavy metals for functional specialization areas were established. The indices of accumulation of heavy metals can be used to the monitoring to urban territories.


2009 ◽  
Vol 6 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Abida Begum ◽  
M. Ramaiah ◽  
Harikrishna ◽  
Irfanulla Khan ◽  
K. Veena

Assessment of heavy metal content in litchens and soil samples from various localities of Hosur Road, Bangalore south was undertaken. Topsoil samples (0-10 cm) were taken at various locations, the metals analysed were Cr, Pb, Fe, Zn, Ni and Cu. The geoaccumulation index of these metals in the soils under study residential areas indicated that they are uncontaminated with Ni, Zn, and Fe and moderately contaminated with Cr and Pb. In Industrial areas and traffic junctions the concentration of Fe, Pb and Ni was maximum. Heavy metal accumulation in few prominent lichens of some localities was analysed. Cr and Pb were maximum inChrysothrix candelaris(L.) Laundon, at the gardens of Madiwala and Silk Board junction with 95.29 and 623.95 µg g–1dry weight respectively. Fe and Cu were maximum inBulbothrix isidiza(Nyl.). Hale andPyxine petricolaNyl at Central Prison campus and Kendriya Sadan campus with 22721 and 338.12 µg g–1dry weight respectively,Lecanora perplexaBrodo at Infosis and Wipro Campus, electronic city have 531.5 and 634 µg g–1dry weight of Zn. While Ni and Fe were maximum in Arthopyreniaceae at Shanti Niketan of MICO Limited with 1100 and 23200 µg g–1dry weight respectively.


2021 ◽  
Vol 81 (2) ◽  
pp. 137-144
Author(s):  
SINTSOV ALEXANDER V. ◽  
◽  
BARMIN ALEXANDER N. ◽  
ZIMOVETS PETR A. ◽  
VALOV MICHAIL V. ◽  
...  

The relevance of the work lies in the study of the process of pollution of the soil cover of an urbanized area with heavy metals. The aim of the work was to study the modern process of soil pollution in the city of Astrakhan with lead. The main task of the work was to determine the degree of exceeding the hygienic standards of the maximum permissible concentration of lead in soil samples. The work involved the methods of geographical and ecological research. The collection of soil samples was carried out, followed by determination in a certified laboratory of the concentration of a substance in each of the soil samples. In the course of the work, the indicators of exceeding the maximum permissible concentration of lead in the soil of Astrakhan were determined and the presumptive sources of pollution were identified. Under the conditions of the urban environment, under the influence of anthropogenic and technogenic processes, a significant change in the composition of the soil cover occurs. One of the processes that significantly affect the soil cover of the city is the process of soil pollution with heavy metals. The term heavy metals, as a rule, means metals (lead, zinc, chromium, mercury and others) that are found in various components of the natural environment and systems of anthropogenic and technogenic origin. Heavy metals are bio-chemically active and highly toxic. These substances are characterized by the ability to accumulate in the body of living beings and have a negative effect on them. The concentration of heavy metals in the soil of an urbanized area poses a significant danger to the urban population. The process of pollution of the soil cover of the city with heavy metals is associated with a large number of technogenic sources, which include energy and industrial facilities, systems for providing the city's infrastructure, zones of construction activities and storage of materials or waste. Lead «Plumbum - Pb» is one of the main pollutants of urban soil with highly toxic properties and belonging to the group of heavy metals. The article describes the results of a study of the current lead content in the soil of the city of Astrakhan conducted in 2020.


2018 ◽  
Vol 34 ◽  
pp. 02040
Author(s):  
Ain Nihla Kamarudzaman ◽  
Yee Shan Woo ◽  
Mohd Faizal Ab Jalil

The concentration of six heavy metals such as Cu, Cr, Ni, Cd, Zn and Mn were studied in the soils around Perlis. The aim of the study is to assess the heavy metals contamination distribution due to industrialisation and agricultural activities. Soil samples were collected at depth of 0 – 15 cm in five stations around Perlis. The soil samples are subjected to soil extraction and the concentration of heavy metals was determined via ICP - OES. Overall concentrations of Cr, Cu, Zn, Ni, Cd and Mn in the soil samples ranged from 0.003 - 0.235 mg/L, 0.08 - 41.187 mg/L, 0.065 - 45.395 mg/L, 0.031 - 2.198 mg/L, 0.01 - 0.174 mg/L and 0.165 - 63.789 mg/L respectively. The concentration of heavy metals in the soil showed the following decreasing trend, Mn > Zn > Cu > Ni > Cr > Cd. From the result, the level of heavy metals in the soil near centralised Chuping industrial areas gives maximum value compared to other locations in Perlis. As a conclusion, increasing anthropogenic activities have influenced the environment, especially in increasing the pollution loading.


2019 ◽  
pp. 135-146
Author(s):  
Aynazhan M. Aitimova ◽  
Gusman Zh. Kenzhetayev ◽  
Vladimir N. Permyakov

Investigations were carried out to study the state of the soil in the territory of the Shetpe South chalk deposit and in the area of the Caspian Cement plant in October 2018. 20 soil samples were taken. Samples were taken from a depth of 0–20 cm. The presence of heavy metals in the soil was determined by atomic absorption spectrometry using AAC MGA-915M (Lumex, Russia), their content was compared with background values and with existing maximum allowable concentrations. The total soil pollution indicator or ZC , using the background, was used to study the state of the soil. The indicators of the soil pollution index were calculated to improve the diagnostic performance of the study area. The calculation of the total soil pollution indicator showed that the value of ZC for all sites was from 3,58 to 5,26 units. The soils are characterized as non-hazardous (ZC < 16), and the assessment of the condition of the soil is biased due to taking into account only heavy metals with KC < 1. The soil pollution index calculations showed that the majority of soil samples at sites PP-1, PP-2 and PP-3 have indicators of soil pollution index > 1, which characterizes the soil as "polluted". At site PP-4 (control) the soil pollution index is 0,74, the soils are "clean". Statistical processing in the environment Statistica 10 showed that the Kruskal — Wallis criterion is statistically significant only for Ni and As (p < 0,05) for soil samples at site PP-2 (at the site of transportation of chalk and dumps). Maps were performed using satellite imagery and using of Google Maps, Mapinfo Professionalv. 12.


Sign in / Sign up

Export Citation Format

Share Document