Synthesis of the COFs: From Design Principle to Synthetic Reactions

2021 ◽  
Vol 894 ◽  
pp. 21-30
Author(s):  
Shi Da Zhuang

Covalent organic frameworks (COFs) are a new category of materials and developing fast in recent years. COFs present low density, controllable porosity, and high surface area. Based on these merits, COFs have great potential in various applications, such as gas separation and storage, energy storage, catalysis, and many others. In this review, we summarize the synthesis of COFs from the aspects of design principles and synthetic reactions. In particular, we categorize the synthetic reactions of also COFs into six categories and introduce the advantages of each type of reaction. Moreover, we utilize several examples to illustrate how to construct COFs by these synthetic methods. In the end, a future perspective on the development of new synthetic methods for COFs is briefly mentioned.

Nano LIFE ◽  
2016 ◽  
Vol 06 (02) ◽  
pp. 1642001 ◽  
Author(s):  
Xinjun Yu ◽  
Yang Jiao ◽  
Qinyuan Chai

Gold nanoparticles (AuNPs) as one of the most stable metal nanoparticles have demonstrated extensive applications in recent years. This paper will give a focus on the AuNPs as biosensors, due to their inertness, unique optical properties, high surface area, and various surface functionalization methods. Synthesis of AuNps and the surface functionalization will be discussed in the first part. The size, shape, and stability can be controlled by different synthetic methods, while reductant usually needed. By surface functionalization with different molecules such as polymers, nucleic acids, and proteins, AuNPs will aggregate when specified molecule linkages showing up enables selective detections. The application in biosensing to detect proteins, oligonucleotide, glucose, and heavy metals will be exemplified, followed by the summary and future perspective part in the conclusion.


2021 ◽  
Author(s):  
KUMAR AAYUSH ◽  
Abhishek Bhardwaj ◽  
SHIVAM SHANDILYA ◽  
SANKET BHALERAO

Carbon nanotubes (CNTs) are one-dimensional tubular structures of carbon that have attracted much attention due to their potential to be used in various fields like energy storage/conversion devices, biosensing devices, drug delivery systems to name a few. Their excellent electrochemical properties like electron mobility, electrical and thermal conductivity, and high surface area make them good material for use in energy storage and conversion materials. The most promising research in the synthesis and applications of CNTs toward energy conversion and storage is highlighted along with limitations faced in mass production.


2021 ◽  
Author(s):  
KUMAR AAYUSH ◽  
Abhishek Bhardwaj ◽  
SHIVAM SHANDILYA ◽  
SANKET BHALERAO

Carbon nanotubes (CNTs) are one-dimensional tubular structures of carbon that have attracted much attention due to their potential to be used in various fields like energy storage/conversion devices, biosensing devices, drug delivery systems to name a few. Their excellent electrochemical properties like electron mobility, electrical and thermal conductivity, and high surface area make them good material for use in energy storage and conversion materials. The most promising research in the synthesis and applications of CNTs toward energy conversion and storage is highlighted along with limitations faced in mass production.


2021 ◽  
Author(s):  
Gurwinder Singh ◽  
Rohan Bahadur ◽  
Ajanya Maria Ruban ◽  
Jefrin Marykala Davidraj ◽  
Dawei Su ◽  
...  

Nanoporous biocarbons derived from waste biomass have created significant attention owing to their great potential for energy storage and conversion and water purification. However, the fabrication technology for these materials...


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Helge Skarphagen ◽  
David Banks ◽  
Bjørn S. Frengstad ◽  
Harald Gether

Borehole thermal energy storage (BTES) exploits the high volumetric heat capacity of rock-forming minerals and pore water to store large quantities of heat (or cold) on a seasonal basis in the geological environment. The BTES is a volume of rock or sediment accessed via an array of borehole heat exchangers (BHE). Even well-designed BTES arrays will lose a significant quantity of heat to the adjacent and subjacent rocks/sediments and to the surface; both theoretical calculations and empirical observations suggest that seasonal thermal recovery factors in excess of 50% are difficult to obtain. Storage efficiency may be dramatically reduced in cases where (i) natural groundwater advection through the BTES removes stored heat, (ii) extensive free convection cells (thermosiphons) are allowed to form, and (iii) poor BTES design results in a high surface area/volume ratio of the array shape, allowing high conductive heat losses. The most efficient array shape will typically be a cylinder with similar dimensions of diameter and depth, preferably with an insulated top surface. Despite the potential for moderate thermal recovery, the sheer volume of thermal storage that the natural geological environment offers can still make BTES a very attractive strategy for seasonal thermal energy storage within a “smart” district heat network, especially when coupled with more efficient surficial engineered dynamic thermal energy stores (DTES).


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Guo-Qun Zhang ◽  
Bo Li ◽  
Mao-Cheng Liu ◽  
Shang-Ke Yuan ◽  
Leng-Yuan Niu

Transition metal phosphide alloys possess the metalloid characteristics and superior electrical conductivity and are a kind of high electrical conductive pseudocapacitive materials. Herein, high electrical conductive cobalt phosphide alloys are fabricated through a liquid phase process and a nanoparticles structure with high surface area is obtained. The highest specific capacitance of 286 F g−1 is reached at a current density of 0.5 A g−1. 63.4% of the specific capacitance is retained when the current density increased 16 times and 98.5% of the specific capacitance is maintained after 5000 cycles. The AC//CoP asymmetric supercapacitor also shows a high energy density (21.3 Wh kg−1) and excellent stability (97.8% of the specific capacitance is retained after 5000 cycles). The study provides a new strategy for the construction of high-performance energy storage materials by enhancing their intrinsic electrical conductivity.


2017 ◽  
Vol 1 (6) ◽  
pp. 1414-1424 ◽  
Author(s):  
Michael Cox ◽  
Robert Mokaya

Mesoporous carbons (with up to 95% of pore volume from mesopores) with surface area and pore volume of ∼4000 m2 g−1 and ∼3.6 cm3 g−1, respectively, are excellent CO2 absorbers under pre combustion conditions and can store 55 mmol g−1 (i.e., 2.42 g g−1) or 930 g l−1 at 25 °C and 50 bar.


2021 ◽  
Vol 21 (5) ◽  
pp. 2705-2741
Author(s):  
Maria Monteserín ◽  
Silvia Larumbe ◽  
Alejandro V. Martínez ◽  
Saioa Burgui ◽  
L. Francisco Martín

The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.


2019 ◽  
Vol 9 ◽  
pp. 184798041882447 ◽  
Author(s):  
Johnson Michael ◽  
Zhang Qifeng ◽  
Wang Danling

MXenes have been under a lot of scientific investigation due to the novel characteristics that are inherent to two-dimensional nanostructures. There are a multitude of MXenes being studied and one of the most popular among these would be the titanium carbides. The general formula for titanium carbide is Ti n+ 1C n for the nanosheets produced that have undergone much study in the past few years. These studies include how the etching process affects the final MXene sheet and how the post-processing via heat or combining with polymers and/or inorganic compounds influences the mechanical and electrical properties. It is found that different etching techniques can be used to change the electrical properties of the produced MXenes and different post-processing techniques can be used to further change the properties of the nanosheets. The possible application of the titanium carbide MXenes as chemical sensing and energy storage materials will be briefly discussed. MXene nanosheets show promise in such devices due to their high surface area to volume ratio and their specific surface structure with feasible surface functionalization.


Sign in / Sign up

Export Citation Format

Share Document