Supramolecular Gels Based on Azobenzene Derivatives

2021 ◽  
Vol 894 ◽  
pp. 3-12
Author(s):  
Hong Ze Zhang

In the past years, azobenzene, as a common photoreactive group, has been widely used in intelligent photocontrolled supramolecular gels. In the field of biomedicine, a few supramolecular hydrogels based on azobenzene are regarded as carriers with low damage and high control in vivo due to their advantages in light response. In the environmental field, some hydrogels can also adsorb pollutants under the control of light through the interaction between host and guest. At the same time, supramolecular hydrogels based on azobenzene with multiple stimulus responses have been studied. It is difficult for most supramolecular organogels to have multiple stimulus responses simultaneously and the preparation conditions are also more complex. In this paper, I have summarized the latest research results of supramolecular hydrogels and organogels based on azobenzene in recent years so that researchers can have a deeper understanding of the preparation methods, properties and application of the supramolecular gels containing azobenzene.

Author(s):  
K.E. Krizan ◽  
J.E. Laffoon ◽  
M.J. Buckley

With increase use of tissue-integrated prostheses in recent years it is a goal to understand what is happening at the interface between haversion bone and bulk metal. This study uses electron microscopy (EM) techniques to establish parameters for osseointegration (structure and function between bone and nonload-carrying implants) in an animal model. In the past the interface has been evaluated extensively with light microscopy methods. Today researchers are using the EM for ultrastructural studies of the bone tissue and implant responses to an in vivo environment. Under general anesthesia nine adult mongrel dogs received three Brånemark (Nobelpharma) 3.75 × 7 mm titanium implants surgical placed in their left zygomatic arch. After a one year healing period the animals were injected with a routine bone marker (oxytetracycline), euthanized and perfused via aortic cannulation with 3% glutaraldehyde in 0.1M cacodylate buffer pH 7.2. Implants were retrieved en bloc, harvest radiographs made (Fig. 1), and routinely embedded in plastic. Tissue and implants were cut into 300 micron thick wafers, longitudinally to the implant with an Isomet saw and diamond wafering blade [Beuhler] until the center of the implant was reached.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 3023-3034
Author(s):  
Weiyuan Liang ◽  
Dou Wang ◽  
Xiaohui Ren ◽  
Chenchen Ge ◽  
Hanyue Wang ◽  
...  

AbstractTwo-dimensional black phosphorus (BP) has been demonstrated to be promising in photoelectronic devices, electrode materials, and biomedicine owing to its outstanding properties. However, the application of BP has been hindered by harsh preparation conditions, high costs, and easy degradation in ambient condition. Herein, we report a facile and cost-effective strategy for synthesis of orthorhombic phase BP and a kind of BP-reduced graphene oxide (BP/rGO) hybrids in which BP remains stable for more than 4 weeks ascribed to the formation of phosphorus-carbon covalent bonds between BP and rGO as well as the protection effect of the unique wrinkle morphology of rGO nanosheets. Surface modification BP/rGO hybrids (PEGylated BP/rGO) exhibit excellent photothermal performance with photothermal conversion efficiency as high as 57.79% at 808 nm. The BP/rGO hybrids exhibit enhanced antitumor effects both in vitro and in vivo, showing promising perspectives in biomedicine.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 795-820
Author(s):  
Andrea Spanu ◽  
Laura Martines ◽  
Annalisa Bonfiglio

This review focuses on the applications of organic transistors in cellular interfacing. It offers a comprehensive retrospective of the past, an overview of the latest innovations, and a glance on the future perspectives of this fast-evolving field.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Dien-Thien To ◽  
Yu-Chuan Lin

Copper phyllosilicates-derived catalysts (CuPS-cats) have been intensively explored in the past two decades due to their promising activity in carbonyls hydrogenation. However, CuPS-cats have not been completely reviewed. This paper focuses on the aspects concerning CuPS-cats from synthesis methods, effects of preparation conditions, and dopant to catalytic applications of CuPS-cats. The applications of CuPS-cats include the hydrogenation of carboxylates, carboxylic acids, carbonates, formyls, and CO2 to their respective alcohols. Besides, important factors such as the Cu dispersion, Cu+ and Cu0 surface areas, particles size, interaction between Cu and supports and dopants, morphologies, and spatial effect on catalytic performance of CuPS-cats are discussed. The deactivation and remedial actions to improve the stability of CuPS-cats are summarized. It ends up with the challenges and prospective by using this type of catalyst.


2021 ◽  
Vol 35 ◽  
pp. 205873842110005
Author(s):  
Xia Ma ◽  
Meng Yang ◽  
Yan He ◽  
Chuntao Zhai ◽  
Chengliang Li

Tremella polysaccharide is known to be structurally unique and biologically active natural products, abundant and versatile in activities and applications in food industry, daily chemical industry and medicine industry. In order to improve the industrialisation of Tremella polysaccharide, the limitations of preparation and structure-activity relationship of Tremella polysaccharide were reviewed in this paper. The research progress of Tremella polysaccharide in the past 20 years was summarized from the sources, preparation methods, molecular structure, activity and application, and the research trend in the future was also prospected. The application prospect of Tremella polysaccharide in against multiple sub-health states was worth expecting.


2021 ◽  
pp. 026858092110053
Author(s):  
Koichi Hiraoka

This article reviews the research trends in welfare sociology (sociological studies on social security and welfare), one of the many subfields of active research in sociology in Japan. For this purpose, several research streams formed from the 1970s to the 2000s are described, and some of the most important research results produced within these in the past two decades are introduced. In the latter part of this article, a broad overview of the research trends in Japanese welfare sociology is attempted by focusing on the contents of the journal published by the Japan Welfare Sociology Association (JWSA).


Lab Animal ◽  
2021 ◽  
Vol 50 (10) ◽  
pp. 273-276 ◽  
Author(s):  
Ellen P. Neff
Keyword(s):  

2015 ◽  
Vol 37 ◽  
pp. 4 ◽  
Author(s):  
Andrea Yankowski ◽  
Puangtip Kerdsap ◽  
Dr. Nigel Chang

<p>Northeast Thailand is known for salt production, both today and in the past.  Prehistoric salt sites are found throughout the region and ethnographic and historical data demonstrates the importance of salt as a commodity as well as for preserving and fermenting fish. This paper explores the archaeology and cultural history of salt and salt fermented fish products in Northeast Thailand and the Greater Mekong Delta region.  Using archaeological, historical and ethnographic data, it addresses how the foods we eat and our preparation methods can be deeply rooted in our cultural history and identity, and discusses the ways in which they can be studied in the archaeological record to learn about the past.</p> <p><span style="text-decoration: underline;"> </span></p>


Author(s):  
Favian Liu ◽  
Negar Ghasem Ardabili ◽  
Izaiah Brown ◽  
Harmain Rafi ◽  
Clarice Cook ◽  
...  

Abstract Carbon fiber microelectrodes (CFMEs) have been used to detect neurotransmitters and other biomolecules using fast-scan cyclic voltammetry (FSCV) for the past few decades. This technique measures neurotransmitters such as dopamine and, more recently, physiologically relevant neuropeptides. Oxytocin, a pleiotropic peptide hormone, is physiologically important for adaptation, development, reproduction, and social behavior. This neuropeptide functions as a stress-coping molecule, an anti-inflammatory agent, and serves as an antioxidant with protective effects especially during adversity or trauma. Here, we measure tyrosine using the Modified Sawhorse Waveform (MSW), enabling enhanced electrode sensitivity for the amino acid and oxytocin peptide. Applying the MSW, decreased surface fouling and enabled codetection with other monoamines. As oxytocin contains tyrosine, the MSW was also used to detect oxytocin. The sensitivity of oxytocin detection was found to be 3.99 ± 0.49 nA/µM, (n=5). Additionally, we demonstrate that applying the MSW on CFMEs allows for real time measurements of exogenously applied oxytocin on rat brain slices. These studies may serve as novel assays for oxytocin detection in a fast, sub-second timescale with possible implications for in vivo measurements and further understanding of the physiological role of oxytocin.


Sign in / Sign up

Export Citation Format

Share Document