Experimental Investigation of Mechanical Properties and Effect of Porosity on Epoxy Granite Composite

2021 ◽  
Vol 1042 ◽  
pp. 123-129
Author(s):  
S. Nallusamy ◽  
M. Rajaram Narayanan ◽  
K. Sujatha ◽  
R. Suganthini Rekha

The mechanical properties of epoxy granite composite are extensively influenced by the structure of porosity. The aim of this research work is to establish a mathematical model to estimate the correlation among damping and porosity. Also to estimate the correlation among flexural strength and porosity for given epoxy granite composites using experimental methods. The theoretical porosity of epoxy granite in terms of their component properties and volume fraction were determined and verified. Taguchi design of experiments was applied to plan the number of experiments to be carried out. The experimental results obtained from different test were plotted on graph over analytical results. Regression analysis was applied to establish the empirical relation between inherent properties and mechanical properties. Comparison between the analytical model and experimental results was carried out to validate the mathematical model

2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Delia Perju ◽  
Harieta Pirlea ◽  
Gabriela-Alina Brusturean ◽  
Dana Silaghi-Perju ◽  
Sorin Marinescu

The European laws and recently the Romanian ones impose more and more strict norms to the large nitrogen dioxide polluters. They are obligated to continuously improve the installations and products so that they limit and reduce the nitrogen dioxide pollution, because it has negative effects on the human health and environment. In this paper are presented these researches made within a case study for the Timi�oara municipality, regarding the modeling and simulation of the nitrogen dioxide dispersion phenomenon coming from various sources in atmosphere with the help of analytical-experimental methods. The mathematical model resulting from these researches is accurately enough to describe the real situation. This was confirmed by comparing the results obtained based on the model with real experimental values.


2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


2016 ◽  
Vol 844 ◽  
pp. 38-45 ◽  
Author(s):  
Tatiana Liptáková ◽  
Martin Lovíšek ◽  
Branislav Hadzima

The Al-brasses are considered corrosion resistant construction materials often used to pipe systems in energy industry, where they are exposed to flowing liquids environments. In that system the brasses are loaded chemically and mechanically. The aim of our research work is to compare corrosion properties of four Al-brasses produced by different manufactures because in operation conditions they have dissimilar reliability and durability. The examined Al-brasses have similar chemical composition but differ in microstructure, surface state what affects their corrosion and mechanical properties. The effect of the mentioned parameters on corrosion and mechanical susceptibility to degradation are investigated by chosen experimental methods.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012046
Author(s):  
I Y Amran ◽  
K Isa

Abstract The dynamic model and motion simulation for a Triangular-Shaped Autonomous Underwater Vehicle (TAUV) with independently controlled rudders are described in this paper. The TAUV is designed for biofouling cleaning in aquaculture cage fishnet. It is buoyant underwater and moves by controlling two thrusters. Hence, in this research work, the authors designed a TAUV that is propelled by two thrusters and maneuvered by using an independently controllable rudder. This paper discussed the development of a mathematical model for the TAUV and its dynamic characteristics. The mathematical model was simulated by using Matlab and Simulink to analyze the TAUV’s motion based on open-loop control of different rudder angles. The position, linear and angular velocities, angle of attack, and underwater vehicle speed are all demonstrated in the findings.


2010 ◽  
Vol 126-128 ◽  
pp. 545-550 ◽  
Author(s):  
Wen Ji Xu ◽  
W. Wang ◽  
Xu Yue Wang ◽  
Gui Bing Pang

The drilling burr is taken as the research object. A mathematical model of electrochemical deburring (ECD) is established and the effects of main influencing factors, such as inter-electrode gap, applied voltage and deburring time, on burr height have been analyzed. The results show that the deburring time increases with the increase of initial burr height, inter-electrode gap, with the decrease of volume of electrochemical equivalent of the workpiece material, conductivity of electrolyte and applied voltage. The deburring time for various burr heights can be predicted by the mathematical model. The calculated results obtained from the mathematical model are approximately consistent with the experimental results. The results show that initial burr height h0=0.722mm is removed, and the fillet radius R=0.211mm is obtained.


2019 ◽  
Vol 28 (4) ◽  
pp. 273-284
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

Rising environmental concerns and depletion of petrochemical resources have resulted in an increased interest in biodegradable natural fiber-reinforced polymer composites. In this research work, jute fiber has been used as a reinforcement and polylactic acid (PLA) as the matrix material to develop jute/PLA green composites with the help of compression molding technique. The effect of fiber volume fraction ranging from 25% to 50% and curing temperature ranging from 160°C to 180°C on different samples were investigated for mechanical properties and water absorption. Results obtained from various tests indicate that with an increase in the fiber volume fraction, tensile and flexural strength increases till 30% fiber fraction, thereafter decreases with further increase in fiber content. Maximum tensile and flexural strength of jute/PLA composites was obtained with 30% fiber volume fraction at 160°C curing temperature. The trend obtained from mechanical properties is further justified through the study of surface morphology using scanning electron microscopy.


2013 ◽  
Vol 631-632 ◽  
pp. 358-361
Author(s):  
Shang Wei ◽  
Yang Xiao Jing ◽  
Mao Cui ◽  
Guo Long

Polymethyl methacrylate (PMMA) has shown some excellent performances. However the humidity environment affects mechanical properties of PMMA seriously. In this work, the digital phase-shifting photoelasticity is used to test the humidity stress of the boundary according to which we concluded that the boundary stress decreases gradually from the boundary to the inner. The mathematical model of the boundary stress distribution is established based on the distribution law of the boundary stress. This mathematical model can be used to predict the effect of the humidity environment to the boundary stress, and guide PMMA to use safely.


Author(s):  
Vankudothu Bhikshma ◽  
Kandiraju Promodkumar ◽  
Putta Panduranghiah

The demand for concrete is increasing day by day. As the consumption of cement is increased, environmental issues arise due to the release of CO2 during the manufacturing of cement. The objective of this research work is to produce a pollution free concrete with a combination of fly ash and GGBS (Ground granulated blast furnace slag) and without the use of cement. In this paper an attempt was made to study the mechanical properties of high strength geo-polymer concrete of grade M60 using GGBS, fly ash and micro silica. The testing program was planned for the mechanical properties of geo-polymer concrete and flexural behavior of corresponding beams. The experimental results indicated that the geo-polymer concrete M60 grade has a compressive strength of 70.45 MPa at the age of 28 days cured at ambient condition. Further, flexural strength and split tensile strengths for M60 grade high strength geo-polymer concrete at 28 days were observed to be 5.45 MPa and 3.63 MPa respectively. The modulus of elasticity was higher than the theoretical value proposed by IS 456-2000. It was also observed that the load carrying capacity of M60 grade high strength geo-polymer concrete found to be more than corresponding grade conventional concrete. The load-deflection, moment-curvature relationships were studied. The experimental results were encouraging to continue for further research in the area high strength geo-polymer concrete.


10.12737/8462 ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 130-139
Author(s):  
Стародубцева ◽  
Tamara Starodubtseva ◽  
Аскомитный ◽  
Aleksey Askomitnyy

This article describes a technique for modeling of wood polymer-sandy composite. Interface input form of initial data for modeling; differential equations underlying the mathematical model are presented. To solve the system of differential and algebraic equations computer program "Program to simulate the struc-ture and mechanical properties of wood polymer-sandy composite" is developed. The program, developed in the environment of Borland Delphi 7.0, programming language Object Pascal, is intended for modeling the mechanical behavior of wood polymer-sandy composite of given composition.


Sign in / Sign up

Export Citation Format

Share Document