HPT-Deformation of Copper and Nickel Single Crystals

2006 ◽  
Vol 503-504 ◽  
pp. 621-626 ◽  
Author(s):  
Martin Hafok ◽  
A. Vorhauer ◽  
Jozef Keckes ◽  
Reinhard Pippan

Copper and nickel single crystals of high purity with a crystallographic orientation, (001) and (111) respectively, were deformed by applying high pressure torsion (HPT) at room temperature. Special interest was devoted to the structural evolution of the material, which was characterized by electron backscatter diffraction (EBSD) and X-ray texture analysis as well. In addition back scatter electron investigations were applied to characterize shape and size of the new formed structure. Furthermore the study is focused on the micro structural and micro textural evolution that lead to the increase of missorientation angle with increasing plastic deformation. We observed an increasing fragmentation of the structure with increasing plastic equivalent strain up to a level where the grain size is saturated. The saturation could be traced back to dynamical recovery and recrystallisation during the deformation process that is depending on the purity of the material.

2014 ◽  
Vol 616 ◽  
pp. 263-269
Author(s):  
Murat Isik ◽  
Mitsuo Niinomi ◽  
Ken Cho ◽  
Masaaki Nakai ◽  
Junko Hieda ◽  
...  

The effect of high-pressure torsion (HPT) processing on the microstructure and Vickers hardness of Co-Cr-Mo (CCM) alloys were investigated in this study. The microstructure of initial CCM alloy contains equiaxed grains with a grain diameter of approximately 50 μm and twins. The clear grain boundaries of equiaxed grains and twins disappear after HPT processing at a rotation number, N, of 10. The phase maps of initial CCM alloy and CCM alloy subjected to HPT processing at N = 5 measured by electron backscatter diffraction exhibit that the ratio of γ phase decreases from 93.5% to 34.1% and the ratio of ε phase increases from 6.5% to 65.9% by applying HPT processing. These results indicate that the ε phase is formed by high-strain, which is induced by the HPT processing. The Vickers hardness values on the surfaces of the CCM alloys subjected to HPT processing at N = 1, 5, and 10 increase with increasing the equivalent strain, εeq. These results suggest that an increase of Vickers hardness is correlated to an increase of the ratio of ε phase and the dislocation density, and grain refinement, which are caused by the high-strain induced by HPT processing.


2009 ◽  
Vol 615-617 ◽  
pp. 15-18 ◽  
Author(s):  
Emil Tymicki ◽  
Krzysztof Grasza ◽  
Katarzyna Racka ◽  
Marcin Raczkiewicz ◽  
Tadeusz Łukasiewicz ◽  
...  

4H-SiC single crystals grown by the seeded physical vapour transport method have been investigated. These crystals were grown on 6H-SiC seeds. The influence of the seed temperature, form and granulation of SiC source materials on the stability and efficiency of the 4H polytype growth have been investigated. A new way of the seed mounting - with an open backside - has been used. Crystals obtained were free of structural defects in the form of hexagonal voids. The crystalline structure of SiC crystals was investigated by EBSD (Electron Backscatter Diffraction) and X-Ray diffraction methods. Moreover, defects in crystals and wafers cut from these crystals were examined by optical, scanning electron and atomic force microscopy combined with KOH etching.


2011 ◽  
Vol 702-703 ◽  
pp. 165-168 ◽  
Author(s):  
Aicha Loucif ◽  
Thierry Baudin ◽  
François Brisset ◽  
Roberto B. Figueiredo ◽  
Rafik Chemam ◽  
...  

This investigation uses electron backscatter diffraction (EBSD) to study the development of microtexture with increasing deformation in an AlMgSi alloy having an initial grain size of about 150 µm subjected to high pressure torsion (HPT) up to a total of 5 turns. An homogeneous microstructure was achieved throughout the disc sample at high strains with the formation of ultra-fine grains. Observations based on orientation distribution function (ODF) calculation reveals the presence of the torsion texture components often reported in the literature for f.c.c. materials. In particular, the C {001}<110> component was found to be dominant. Furthermore, no significant change in the texture sharpness was observed by increasing the strain.


2011 ◽  
Vol 702-703 ◽  
pp. 169-172 ◽  
Author(s):  
Robert Chulist ◽  
Andrea Böhm ◽  
E. Rybacki ◽  
T. Lippmann ◽  
C.G. Oertel ◽  
...  

The texture of polycrystalline Ni50Mn29Ga21alloys fabricated by high pressure torsion (HPT) was investigated with high-energy synchrotron radiation. HPT was performed at temperatures between 873K and 1173K under a hydrostatic pressure of 400 MPa. During HPT above 973K the initial cyclic fibre texture changes to a strong cube and a weak F component. Below 973K a strong rotated cube and weak F and C components develop. Additionally, electron backscatter diffraction reveals that samples deformed at low temperature do not completely transform to martensite giving rise to residual austenite.


2014 ◽  
Vol 1760 ◽  
Author(s):  
Christine Tränkner ◽  
Aurimas Pukenas ◽  
Jelena Horky ◽  
Michael Zehetbauer ◽  
Werner Skrotzki

ABSTRACTNiAl, YCu and TiAl polycrystals with B2 and L10 structure, respectively, have been deformed by high pressure torsion (HPT) at temperatures between 20°C and 500°C at a hydrostatic pressure of 8 GPa to high shear strains. Local texture measurements were done by diffraction of high-energy synchrotron radiation and X-ray microdiffraction. In addition, the microstructure was analyzed by electron backscatter diffraction (EBSD). Besides typical shear components an oblique cube component is observed with quite large rotations about the transverse direction. Based on the temperature dependence of this component as well as on microstructure investigations it is concluded that it is formed by discontinuous dynamic recrystallization. The influence of high pressure on recrystallization of intermetallics at low temperatures is discussed.


2018 ◽  
Vol 55 (1) ◽  
pp. 92-101 ◽  
Author(s):  
T.S. Orlova ◽  
A.M. Mavlyutov ◽  
T.A. Latynina ◽  
E.V. Ubyivovk ◽  
M.Yu. Murashkin ◽  
...  

Abstract. Microstructure evolution of an Al-0.4Zr(wt.%) alloy after isothermal aging (AG) and subsequent high pressure torsion (HPT) and its impact on strength and electrical conductivity has been investigated. Microstructure was characterized by X-ray diffraction, electron backscatter diffraction, transmission electron microscopy (TEM) and electron energy-dispersive X-ray spectroscopy in TEM. The initial Al-0.4Zr(wt.%) alloy obtained by combined casting and rolling presents solid solution of Zr in Al matrix. Aging at 375 °C for 60 h leads to formation of uniformly distributed metastable Al3Zr precipitates with the average diameter of 13 nm, resulting thereby in a decrease of strength sUTS from 128 to 95 MPa and in increase of conductivity from 50.7 to 58.8% IACS at ambient temperature. The subsequent HPT processing leads to grain refinement and partial dissolution of the Al3Zr precipitates that is accompanied by enrichment of solid solution by Zr atoms and by coarsening of the remaining Al3Zr precipitates. The combination of AG and HPT provides the strength and the conductivity at ambient temperature which do not decrease under annealing up to 230 °C. Moreover, additional strengthening accompanied by an increase in conductivity was found for AG-HPT samples after annealing at Tan=230 °C for 1 h, that provides the best combination of the strength of sUTS=142 MPa and the conductivity of 58.3% IACS. Contribution of different possible mechanisms into strength and charge scattering are analyzed on the basis of specific microstructural features. The analysis indicates a suppression of strengthening by the Orowan mechanism in AG and AG-HPT samples. In all the studied states, i.e. initial, after AG, and subsequent HPT, grain boundary strengthening is found to be the main strengthening mechanism.


2011 ◽  
Vol 702-703 ◽  
pp. 370-373
Author(s):  
Jörn Leuthold ◽  
Matthias Wegner ◽  
Sergiy V. Divinski ◽  
K. Anantha Padmanabhan ◽  
Daria Setman ◽  
...  

Disks of copper samples were produced by High Pressure Torsion (HPT). Specimens for tensile creep experiments were cut from the disks and subjected to creep deformation at 348 K to obtain elongations greater than 30%. Electron backscatter diffraction (EBSD) was used to analyze the texture after HPT deformation and after additional tensile elongation.


Sign in / Sign up

Export Citation Format

Share Document