Problems of Heat Source Modeling in Iso–Exothermic Materials Used as Riser Sleeves in Foundry

2006 ◽  
Vol 514-516 ◽  
pp. 1438-1442 ◽  
Author(s):  
Zenon Ignaszak ◽  
Paweł Popielarski

The modeling of heat transfer in materials containing exothermic components must take into consideration the presence of heat sources in the Fourier–Kirchhoff equation. The aim of this investigation was the identification of real and effective thermophysical parameters of the insulating–exothermic materials used as riser sleeves containing these exothermic heat sources. The experiments of steel pouring into the mould, containing different insulating and exothermic sleeves were carried out, using thermocouples measurement systems (thermal analysis of casting–mould system). Then the thermophysical coefficients of these materials were calculated using inverse problem solution. The worked time–dependent formula of exothermic reaction heat (heating yield in W/m3) was called heat source function. The paper presents the basis and the practical expression of heat source by different functions, its justification and the results of simulations using these functions. The numerical system Calcosoft and its Inverse Solution procedure were applied.

2009 ◽  
Vol 283-286 ◽  
pp. 376-381 ◽  
Author(s):  
Zenon Ignaszak ◽  
Paweł Popielarski

In foundry technology the modeling of heat transfer in materials containing exothermic components must take into consideration the presence of heat sources in the Fourier–Kirchhoff equation. The aim of this investigation was the identification of real and effective thermophysical parameters of the insulating and insulating –exothermic materials used as riser sleeves containing these exothermic heat sources. The experiments of liquid steel or cast iron pouring into the mould, containing different insulating and exothermic sleeves were carried out, using thermocouples meas-urement systems (thermal analysis of casting–mould system). Then the thermo-physical coefficients of these materials were calculated using inverse problem solution. The numerical system Calcosoft and its Inverse Solution procedure were applied.


2021 ◽  
Vol 323 ◽  
pp. 00016
Author(s):  
Magda Joachimiak ◽  
Michał Ciałkowski

In this paper the solution to the Cauchy-type inverse problem for the Laplace’s equation is presented. A modified Tikhonov regularization was applied here. The regularization parameter was chosen using the Morozov principle. The relation between the location of the heat source (function singularity) and the stability of the solution to the inverse problem was analyzed. Variable thermal loads in the area were simulated by changing the location of heat sources along two boundaries of the rectangle calculation domain.


2020 ◽  
Vol 42 (3) ◽  
pp. 271-282
Author(s):  
OLEG IVANOV

The general characteristics of planetary systems are described. Well-known heat sources of evolution are considered. A new type of heat source, variations of kinematic parameters in a dynamical system, is proposed. The inconsistency of the perovskite-post-perovskite heat model is proved. Calculations of inertia moments relative to the D boundary on the Earth are given. The 9 times difference allows us to claim that the sliding of the upper layers at the Earth's rotation speed variations emit heat by viscous friction.This heat is the basis of mantle convection and lithospheric plate tectonics.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1853 ◽  
Author(s):  
Pavel Neuberger ◽  
Radomír Adamovský

The efficiency of a heat pump energy system is significantly influenced by its low-temperature heat source. This paper presents the results of operational monitoring, analysis and comparison of heat transfer fluid temperatures, outputs and extracted energies at the most widely used low temperature heat sources within 218 days of a heating period. The monitoring involved horizontal ground heat exchangers (HGHEs) of linear and Slinky type, vertical ground heat exchangers (VGHEs) with single and double U-tube exchanger as well as the ambient air. The results of the verification indicated that it was not possible to specify clearly the most advantageous low-temperature heat source that meets the requirements of the efficiency of the heat pump operation. The highest average heat transfer fluid temperatures were achieved at linear HGHE (8.13 ± 4.50 °C) and double U-tube VGHE (8.13 ± 3.12 °C). The highest average specific heat output 59.97 ± 41.80 W/m2 and specific energy extracted from the ground mass 2723.40 ± 1785.58 kJ/m2·day were recorded at single U-tube VGHE. The lowest thermal resistance value of 0.07 K·m2/W, specifying the efficiency of the heat transfer process between the ground mass and the heat transfer fluid, was monitored at linear HGHE. The use of ambient air as a low-temperature heat pump source was considered to be the least advantageous in terms of its temperature parameters.


1987 ◽  
Vol 109 (4) ◽  
pp. 912-918 ◽  
Author(s):  
J. R. Parsons ◽  
M. L. Arey

Experiments have been performed which describe the transient development of natural convective flow from both a single and two vertically aligned horizontal cylindrical heat sources. The temperature of the wire heat sources was monitored with a resistance bridge arrangement while the development of the flow field was observed optically with a Mach–Zehnder interferometer. Results for the single wire show that after an initial regime where the wire temperature follows pure conductive response to a motionless fluid, two types of fluid motion will begin. The first is characterized as a local buoyancy, wherein the heated fluid adjacent to the wire begins to rise. The second is the onset of global convective motion, this being governed by the thermal stability of the fluid layer immediately above the cylinder. The interaction of these two motions is dependent on the heating rate and relative heat capacities of the cylinder and fluid, and governs whether the temperature response will exceed the steady value during the transient (overshoot). The two heat source experiments show that the merging of the two developing temperature fields is hydrodynamically stabilizing and thermally insulating. For small spacing-to-diameter ratios, the development of convective motion is delayed and the heat transfer coefficients degraded by the proximity of another heat source. For larger spacings, the transient behavior approaches that of a single isolated cylinder.


1992 ◽  
Vol 286 ◽  
Author(s):  
Takeshi Okutani ◽  
Yoshinori Nakata ◽  
Masaakt Suzuki ◽  
Yves Maniette ◽  
Nobuyoshi Goto ◽  
...  

ABSTRACTSiC fine particles were synthesized by the gas-phase thermal decomposition of tetramethylsilane (Si(CH3)4) in hydrogen under microgravity of 10−4G for 10 sec. Rapid heating to the temperature over 800°C which is required for thermal decomposition of Si(CH3)4) under short-time microgravity was attained using a chemical oven where the heat of exothermic reaction of combustion synthesis of Ti-A1-4B composites was used as the heat source. Monodisperse and spherical SiC fine particles were synthesized under microgravity, whereas aggregates of SiC fine particles were synthesized under 1 G gravity. The SiC particles synthesized under microgravity (150-200 nm) were bigger in size and narrower in size distribution than those under 1 G gravity (100-150 nm).


Author(s):  
Shuang-Shuang Zhou ◽  
M. Ijaz Khan ◽  
Sumaira Qayyum ◽  
B. C. Prasannakumara ◽  
R. Naveen Kumar ◽  
...  

This investigation aims to present the thermally developed bioconvection flow of Williamson nanoliquid over an inclined stretching cylinder in presence of linear mixed convection and nonuniform heat source/sink. The activation energy and suspension of gyrotactic microorganisms are accounted with applications of bioconvection phenomenon. Appropriate nondimensional variables are opted to attain the dimensionless form of flow equations. The resulting momentum, energy, concentration and motile density equations are abridged to highly coupled and nonlinear in nature. The numerical treatment is followed for the solution procedure by employing the shooting method. The influence of some relevant dimensionless parameters is discoursed graphically along with physical justifications. Moreover, the impact of several dimensionless parameters on skin friction and Nusselt number is obtained and listed in tables. It is observed that the velocity of fluid shows a decreasing variation for Williamson fluid parameter. The change in unsteadiness parameter and heat source parameter enhanced the nanofluid temperature. The motile microorganisms profile declines with bioconvection constant and bio-convection Lewis number.


2005 ◽  
Vol 129 (2) ◽  
pp. 236-240 ◽  
Author(s):  
Jun Wen ◽  
M. M. Khonsari

An analytical technique is presented for treating heat conduction problems involving a body experiencing oscillating heat flux on its boundary. The boundary heat flux is treated as a combination of many point heat sources, each of which emits heat intermittently based on the motion of the flux. The working function of the intermittent heat source with respect to time is evaluated by using the Fourier series and temperature profile of each point heat source is derived by using the Duhamel’s theorem. Finally, by superposition of the temperature fields over all the point heat sources, the temperature profile due to the original moving heat flux is determined. Prediction results and verification using finite element method are presented for an oscillatory heat flux in a rectangular domain.


2007 ◽  
Vol 129 (3) ◽  
pp. 517-527 ◽  
Author(s):  
Jun Wen ◽  
M. M. Khonsari

An analytical approach for treating problems involving oscillatory heat source is presented. The transient temperature profile involving circular, rectangular, and parabolic heat sources undergoing oscillatory motion on a semi-infinite body is determined by integrating the instantaneous solution for a point heat source throughout the area where the heat source acts with an assumption that the body takes all the heat. An efficient algorithm for solving the governing equations is developed. The results of a series simulations are presented, covering a wide range of operating parameters including a new dimensionless frequency ω¯=ωl2∕4α and the dimensionless oscillation amplitude A¯=A∕l, whose product can be interpreted as the Peclet number involving oscillatory heat source, Pe=ω¯A¯. Application of the present method to fretting contact is presented. The predicted temperature is in good agreement with published literature. Furthermore, analytical expressions for predicting the maximum surface temperature for different heat sources are provided by a surface-fitting method based on an extensive number of simulations.


A mathematical model of thermal process in an electrical machine was built as an example, presented as a three-layer cylinder where internal heat sources operate in one of the layers and heat is submitted to the other two by means of heat conduction. A method of solving the boundary-value problems for heat conduction equation in a complex area – a multi-layered cylinder with internal heat sources operating in one part of the layers and external ones in another part, is proposed. A method of problem solution in conditions of uncertainty of one of the boundary condition at the layers interface with conductive heat exchange between the layers is reviewed. The principle of method lies in the averaging of temperature distributions radially in the internal layers. As a result of transformations at the layers interface a boundary condition of the impedance-type conjugation appears. The analytical and numeric-analytical solutions of simplified problems were obtained.


Sign in / Sign up

Export Citation Format

Share Document