Combination of IBA Techniques for Composition Analysis of GaInAsSb Films

2006 ◽  
Vol 514-516 ◽  
pp. 1603-1607 ◽  
Author(s):  
Victoria Corregidor ◽  
P.C. Chaves ◽  
M.A. Reis ◽  
Carlos Pascual Izarra ◽  
Eduardo Alves ◽  
...  

Quaternary GaInAsSb films alloys were grown by MOVPE technique on GaSb substrates with different growth conditions such as substrate orientation and thickness. The composition of the films determines their bandgap, and also how well they are lattice matched to the substrate. It is thus essential to determine it accurately, which is not a trivial task in this system. The composition of the samples was studied with a combination of Particle Induced Xray Emission (PIXE) and Rutherford Backscattering Spectrometry (RBS) experiments. The RBS experiments were done with a 2 MeV 4He+ or H+ ion beam, according to the thickness of the films, and were used to determine the thickness of the samples. The PIXE experiments were performed at grazing angle conditions and provided accurate elemental composition information. It was found that for thin layers (300 nm) there is a dependence of In incorporation into the matrix according to the substrate orientation, although this tendency was not found for thicker films (24m).

2006 ◽  
Vol 518 ◽  
pp. 155-160
Author(s):  
V. Milinović ◽  
M. Milosavljević ◽  
M. Popović ◽  
M. Novaković ◽  
D. Peruško ◽  
...  

In this paper we present a study of the formation of TiN thin films during the IBAD process. We have analyzed the effects of process parameters such as Ar+ ion energy, ion incident angle, Ti evaporation rates and partial pressure of N2 on preferred orientation and resistivity of TiN layers. TiN thin films were grown by evaporation of Ti in the presence of N2 and simultaneously bombarded with Ar+ ions. Base pressure in the IBAD chamber was 1⋅10-6 mbar. The partial pressure of Ar during deposition was (3.1 – 6.6)⋅10-6 mbar and partial pressure of N2 was 6.0⋅10-6 - 1.1⋅10-5 mbar. The substrates used were Si (100) wafers. TiN thin layers were deposited to a thickness of 85 – 360 nm at deposition rates of Ti from 0.05 to 0.25nm/s. Argon ion energy was varied from 1.5 to 2.0 keV and the angle of ion beam incidence from 0 to 30o. All samples were analyzed by Rutherford backscattering spectrometry (RBS). The changes in concentration profiles of titanium, nitrogen and silicon were determined with 900 keV He++ ion beam. The RBS spectra were analyzed with the demo version of WiNDF code. We have also used X-ray diffraction (XRD) for phase identification. The resistivity of samples was measured with four-point probe method. The results clearly show that TiN thin layer grows with (111) and (200) preferred orientation, depending on the IBAD deposition parameters. Consequently, the formation of TiN thin layers with wellcontrolled crystalline orientation occurs. Also, it was found that the variations in TiN film resistivity could be mainly attributed to the ion beam induced damage during the IBAD process.


1993 ◽  
Vol 316 ◽  
Author(s):  
Sergei M. Duvanov ◽  
Alexander P. Kobzev ◽  
Alexander M. Tolopa

ABSTRACTDepth profiles of elements in the surface layers of metals and metallized dielectrics were investigated by Rutherford Backscatteríng Spectrometry (RBS) (for the depth profiling of heavy elements), resonant elastic Backscattering Spectrometry (BS) of 4He+ and 1H+ (for the light elements depth profiling), Elastic Recoil Detection (ERD) of 1H+ (for depth profiling of hydrogen atoms), SIMS and AES techniques. The technological TAMEK source operated in the regime of ion beam assisted deposition (IBAD) of the metal ions (ion implantation at average beam energy ≤ 150 KeV and simultaneous deposition of the same ions at energy 100 eV) in pulse mode. Coatings were deposited on metal and glass samples at temperature of substrates T=100° C. In this report, we discuss the investigation results of samples modified by IBAD in technical vacuum produced by oil diffusion pumping. Phases like TiO, TiC, TiN, TiH are indicated in interface coating-substrate layers. The total thickness of mutually mixed metal-glass layer was found to be 400 nm and it was equal up to 3 µm for metal-metal layers. Cu/Al thin layers on a glass subsrate may be used as mirrors for powerful lasers with large (up to 5 J/cm2) energy contribution.


Author(s):  
O. Popoola ◽  
A.H. Heuer ◽  
P. Pirouz

The addition of fibres or particles (TiB2, SiC etc.) into TiAl intermetallic alloys could increase their toughness without compromising their good high temperature mechanical and chemical properties. This paper briefly discribes the microstructure developed by a TiAl/TiB2 composite material fabricated with the XD™ process and forged at 960°C.The specimens for transmission electron microscopy (TEM) were prepared in the usual way (i.e. diamond polishing and argon ion beam thinning) and examined on a JEOL 4000EX for microstucture and on a Philips 400T equipped with a SiLi detector for microanalyses.The matrix was predominantly γ (TiAl with L10 structure) and α2(TisAl with DO 19 structure) phases with various morphologies shown in figure 1.


Author(s):  
Chuan Zhang ◽  
Jane Y. Li ◽  
John Aguada ◽  
Howard Marks

Abstract This paper introduces a novel sample preparation method using plasma focused ion-beam (pFIB) milling at low grazing angle. Efficient and high precision preparation of site-specific cross-sectional samples with minimal alternation of device parameters can be achieved with this method. It offers the capability of acquiring a range of electrical characteristic signals from specific sites on the cross-section of devices, including imaging of junctions, Fins in the FinFETs and electrical probing of interconnect metal traces.


Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Sören Möller ◽  
Daniel Höschen ◽  
Sina Kurth ◽  
Gerwin Esser ◽  
Albert Hiller ◽  
...  

The analysis of material composition by ion-beam analysis (IBA) is becoming a standard method, similar to electron microscopy. A pool of IBA methods exists, from which the combination of particle-induced-X-ray emission (PIXE), particle induced gamma-ray analysis (PIGE), nuclear-reaction-analysis (NRA), and Rutherford-backscattering-spectrometry (RBS) provides the most complete analysis over the whole periodic table in a single measurement. Yet, for a highly resolved and accurate IBA analysis, a sophisticated technical setup is required integrating the detectors, beam optics, and sample arrangement. A new end-station developed and installed in Forschungszentrum Jülich provides these capabilities in combination with high sample throughput and result accuracy. Mechanical tolerances limit the device accuracy to 3% for RBS. Continuous pumping enables 5*10−8 mbar base pressure with vibration amplitudes < 0.1 µm. The beam optics achieves a demagnification of 24–34, suitable for µ-beam analysis. An in-vacuum manipulator enables scanning 50 × 50 mm² sample areas with 10 nm accuracy. The setup features the above-mentioned IBA detectors, enabling a broad range of analysis applications such as the operando analysis of batteries or the post-mortem analysis of plasma-exposed samples with up to 3000 discrete points per day. Custom apertures and energy resolutions down to 11 keV enable separation of Fe and Cr in RBS. This work presents the technical solutions together with the quantification of these challenges and their success in the form of a technical reference.


1996 ◽  
Vol 438 ◽  
Author(s):  
N. Tsubouchi ◽  
Y. Horino ◽  
B. Enders ◽  
A. Chayahara ◽  
A. Kinomura ◽  
...  

AbstractUsing a newly developed ion beam apparatus, PANDA (Positive And Negative ions Deposition Apparatus), carbon nitride films were prepared by simultaneous deposition of mass-analyzed low energy positive and negative ions such as C2-, N+, under ultra high vacuum conditions, in the order of 10−6 Pa on silicon wafer. The ion energy was varied from 50 to 400 eV. The film properties as a function of their beam energy were evaluated by Rutherford Backscattering Spectrometry (RBS), Fourier Transform Infrared spectroscopy (FTIR) and Raman scattering. From the results, it is suggested that the C-N triple bond contents in films depends on nitrogen ion energy.


1994 ◽  
Vol 341 ◽  
Author(s):  
J. Hudner ◽  
H. Ohlsén ◽  
E. Fredriksson

AbstractThin layers of Y2O3 have been prepared on silicon (100) by an activated reactive evaporation process involving evaporation of metal Y in an atomic oxygen plasma. The presence of the oxygen plasma was found to be crucial for the formation of homogeneous Y2O3 films on Si. The formation of Y2O3 films on Si (100) at different substrate temperatures was investigated. X-ray diffraction analysis showed that Y2O3 films formed between 300 °C and 650 °C were (111) textured while Y2O3 prepared at lower substrate temperatures (80 °C) exhibited mixed orientations. Rutherford backscattering spectrometry indicated that films were stoichiometric. No pronounced channeling was observed in films grown at 350 °C, suggesting polycrystalline film structures. Atomic force microscopy revealed very smooth surface morphologies with average surface roughness < 20 Å for films 700 Å thick deposited at 350 °C. Secondary ion mass spectroscopy indicated the abundance of intermediate layers in the film-substrate interface.


1996 ◽  
Vol 423 ◽  
Author(s):  
J. C. Roberts ◽  
F. G. Mcintosh ◽  
M. Aumer ◽  
V. Joshkin ◽  
K. S. Boutros ◽  
...  

AbstractThe emission wavelength of the InxGa1−xN ternary system can span from the near ultraviolet through red regions of the visible spectrum. High quality double heterostructures with these InxGa1−xN active layers are essential in the development of efficient optoelectronic devices such as high performance light emitting diodes and laser diodes. We will report on the MOCVD growth and characterization of thick and thin InGaN films. Thick InxGa1−xN films with values of x up to 0.40 have been deposited and their photoluminescence (PL) spectra measured. AlGaN/InGaN/AlGaN double heterostructures (DHs) have been grown that exhibit PL emission in the violet, blue, green and yellow spectral regions, depending on the growth conditions of the thin InGaN active layer. Preliminary results of an AllnGaN/InGaN/AllnGaN DH, with the potential of realizing a near-lattice matched structure, will also be presented.


2012 ◽  
Vol 167 (7) ◽  
pp. 506-511 ◽  
Author(s):  
G. Devaraju ◽  
S. V.S. Nageswara Rao ◽  
N. Srinivasa Rao ◽  
V. Saikiran ◽  
T. K. Chan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document