Electrical Properties of a High-Tc Superconductor-Polymer Compersite

2007 ◽  
Vol 546-549 ◽  
pp. 1989-1992
Author(s):  
Fang Gao Chang ◽  
Kun Fang ◽  
Gui Lin Song

A superconductor-polymer composite of Bi1.8Pb0.4Sr2Ca2Cu3Oy and ethylene propylene rubber (EPR) was prepared by conventional solid-state reaction method. The phase structure of the composite was characterized by using x-ray diffraction technique. The resistivity of composite samples annealed at different temperatures was measured between 40K and 300K. The results indicate that the resistivity of the as-prepared composite increases with increasing EPR content and shows essentially a semiconducting behavior above Tc. For fixed EPR content, the resistivity of composite samples decreases with increasing annealing temperature. The composite begins to show some signs of superconducting transition at an annealing temperature of 700 °C and zero resistance is reached for samples sintered at 800°C. Thermal gravimetric analysis (TGA) on the composite confirmed that 65% of the EPR content still present in the superconducting composite samples. SEM was used to investigate the surface morphology of the composites. Preliminary results show that the mechanical properties of the composite have been much improved compared with its parent superconductor ceramics.

2012 ◽  
Vol 585 ◽  
pp. 219-223
Author(s):  
Rekha Kumari ◽  
N. Ahlawat ◽  
Ashish Agarwal ◽  
M. Sindhu ◽  
N.N. Ahlawat

Na0.5Bi0.5TiO3 (NBT) ceramics were synthesized by conventional solid state reaction method. Structural and dielectric properties of these ceramics were investigated. Crystalline phase of sintered ceramics was investigated by X-ray diffraction (XRD). The Rietveld refinement of powder X-ray diffraction revealed that the prepared ceramics exhibit the rhombohedral space group R3c. Dielectric properties of Na0.5Bi0. analyzer.5TiO3 (NBT) ceramics were studied at different temperatures in a wide frequency range using impedance


2003 ◽  
Vol 17 (13) ◽  
pp. 2539-2544 ◽  
Author(s):  
T. R. Yang ◽  
V. Toma ◽  
O. Furdui ◽  
G. Ilonca

We have investigated the effect of the partial substitution of Sb for Ru in Ru 1 - x Sb x Sr 2( Sm 0.7 Ce 0.3)2 Cu 2 O 10 - δ, (Ru:1222) prepared by conventional solid state reaction method, using X-ray diffraction analysis, electrical resistivity and DC-magnetic susceptibility measurements. Sb doping reduces the conductivity of the system and the onset superconducting transition temperature decreases from 42 K for x = 0 to 21 K for x = 0.06. This maybe due to a distortion of RuO6 octahedral, which is responsible of the increase in hole localization. The corresponding magnetic moment in the investigated samples is about 0.1 μB for Ru. Furthermore we discuss the influence of phase composition on superconducting and magnetic order.


1989 ◽  
Vol 03 (04) ◽  
pp. 307-311 ◽  
Author(s):  
N. CAO ◽  
J.Q. ZHENG ◽  
X.Y. SHAO ◽  
X.S. CHEN ◽  
W.Y. GUAN

The composition dependence of superconductivity and crystal structure in La ( Ba 1−x Ca x)2 Cu 3 O 7−y system was determined by the resistivity measurements and X-ray diffraction analysis. The superconducting transition temperature is raised with the increase of Ca content till x=0.6, at which the zero resistance temperature of the sample is 81.5 K. In the meanwhile, the crystal structure of the sample changed from tetragonal (x=0) to orthorhombic structure (x=0.2, 0.4, 0.6). With further increase of Ca content, the superconductivity decrease for the sample of x=0.8 with mixed phases including the orthorhombic oxygen-deficient perovskite-like (ODP) structure and no superconducting transition is found at 4.2 K for the sample of x=1 without the ODP structure. A possible explanation of these experimental results is given.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
C. R. García ◽  
L. A. Diaz-Torres ◽  
J. Oliva ◽  
M. T. Romero ◽  
P. Salas

Blue phosphorescent strontium aluminosilicate powders were prepared by combustion synthesis route and a postannealing treatments at different temperatures. X-ray diffraction analysis showed that phosphors are composed of two main hexagonal phases: SrAl2O4and Sr3Al32O51. The morphology of the phosphors changed from micrograins (1000°C) to a mixture of bars and hexagons (1200°C) and finally to only hexagons (1300°C) as the annealing temperature is increased. Photoluminescence spectra showed a strong blue-green phosphorescent emission centered atλem=455 nm, which is associated with4f65d1→4f6  (8S7/2)transition of the Eu2+. The sample annealed at 1200°C presents the highest luminance value (40 Cd/m2) with CIE coordinates (0.1589, 0.1972). Also, the photocatalytic degradation of methylene blue (MB) under UV light (at 365 nm) was monitored. Samples annealed at 1000°C and 1300°C presented the highest percentage of degradation (32% and 38.5%, resp.) after 360 min. In the case of photocatalytic activity under solar irradiation, the samples annealed at 1000°C, 1150°C, and 1200°C produced total degradation of MB after only 300 min. Hence, the results obtained with solar photocatalysis suggest that our powders could be useful for water cleaning in water treatment plants.


2015 ◽  
Vol 1107 ◽  
pp. 45-52
Author(s):  
Aaliyawani Ezzerin Sinin ◽  
Walter Charles Primus ◽  
Abdul Halim Shaari ◽  
Zainal Abidin Talib ◽  
Sinin Hamdan

Ceramic sample of La0.70Ba0.30Mn0.40Ti0.60O3 oxide has been prepared by the conventional solid-state reaction method. The sintered sample was characterized by using x-ray diffraction (XRD) and low frequency LCR meter. XRD result shows that the sample has a cubic structure with the existence of impurity phase. The dielectric properties of La0.70Ba0.30Mn0.40Ti0.60O3 measured from room temperature to 200°C shows that the dielectric permittivity is temperature dependence with strong dispersion at low frequencies. A circuit model based on the universal capacitor response function is also being used to represent the dielectric properties of the sample.


2010 ◽  
Vol 19 (02) ◽  
pp. 247-254 ◽  
Author(s):  
NGUYEN VAN MINH ◽  
DAO VIET THANG

Multiferroic Bi 1-x Sm x FeO 3(x = 0.00, 0.05, 0.1, 0.15, 0.2) ceramics were prepared by conventional solid state reaction method. X-ray diffraction measurement was carried out to characterize the crystal structure and to detect the impurities existing in these ceramics. The substitution of rare earth Sm for Bi was found to decrease the impurity phase in BiFeO 3 ceramics. There is strong evidence that both lattice constants a and c of the unit cell become smaller as the Sm 3+ content is increased. The effect of introducing Sm 3+ is shown to decrease the optical band gap for doped sample Bi 1-x Sm x FeO 3. Additionally, the temperature-dependent Raman measurement performed for the lattice dynamics study of Bi 1-x Sm x FeO 3 samples reveals a strong band centered at around 1000–1300 cm-1 which is associated with the resonant enhancement of two-phonon Raman scattering in the multiferroic Bi 1-x Sm x FeO 3 samples. This two-phonon signal is shown to broaden with increasing x. The Raman spectra at low wavenumbers are suggested to be related with magnon in this system.


2014 ◽  
Vol 602-603 ◽  
pp. 32-37 ◽  
Author(s):  
Nan Wu ◽  
Xiao Dong Li ◽  
Shao Hong Liu ◽  
Yu Dong ◽  
Ji Guang Li ◽  
...  

Trivalent thulium ions (Tm3+) doped GdAlO3 (Gd1-xTmxAlO3) phosphors which show a blue luminescence of high color purity have been synthesized by using solid-state reaction method starting from nanosized powders. X-ray diffraction (XRD) measurements were used to analyze the phase transformations that take place during the preparation of the phosphors. The morphologies of the powders calcined at different temperatures were studied by using scanning electron microscopy (SEM). The luminescence properties of the compounds were investigated. Pure phase of orthorhombic type GdAlO3 (GAP) was yielded by calcining the phosphors at 1200°C for 8 h. The PL spectra showed representative Tm3+ emission. The strong band centered at ~488 nm and the weak one centered at 697 nm were attributed to the 1D2-3F4 and 1G4-3F4 transitions of Tm3+, respectively. The quenching concentration of Tm3+ was estimated to be ~0.75at.% (x=0.0075), for which can be ascribed to the exchange interactions. The decay curve was fitted to be a single exponent and the estimated fluorescent lifetime of the GdAlO3:Tm3+ phosphor was 1.73±0.08 ms.


2014 ◽  
Vol 07 (05) ◽  
pp. 1450060 ◽  
Author(s):  
Qun Shi ◽  
Dhia A. Hassan ◽  
Renjie Zeng

Europium-doped Na 1.45 La 8.55-8.55x( SiO 4)6( F 0.9 O 1.1)(0.000 ≤ x ≤ 0.045) phosphors were prepared by a conventional solid-state reaction method at 1200°C and their properties were studied by X-ray diffraction (XRD), and a spectral analysis system. No impurities were observed. The phosphor could be excited at 254 nm, 395 nm and 465 nm to yield a reddish orange emission which was attributed to the 5 D 0 → 7 F j (j = 0–2) transitions of the Eu ion.


1997 ◽  
Vol 12 (11) ◽  
pp. 2976-2980 ◽  
Author(s):  
R. Jose ◽  
Asha M. John ◽  
J. Kurian ◽  
P. K. Sajith ◽  
J. Koshy

A new class of complex perovskites REBa2ZrO5.5 (where RE = La, Ce, Eu, and Yb) have been synthesized and sintered as single phase materials by the solid state reaction method. The structure of these materials was studied by x-ray diffraction, and all of them were found to be isostructural, having a cubic perovskite structure. X-ray diffraction and resistivity measurements have shown that there is no detectable chemical reaction between YBa2Cu3O7–delta; and REBa2ZrO5.5 even under severe heat treatment at 950 °C, and that the addition of REBa2ZrO5.5 up to 20 vol.% in YBa2Cu3O7–δ shows no detrimental effect on the superconducting properties of YBa2Cu3O7-δ. Dielectric constants and loss factors are in the range suitable for their use as substrates for microwave applications. Thick films of YBa2Cu3O7–δ fabricated on polycrystalline REBa2ZrO5.5 substrates gave a zero resistance transition temperature Tc(0) ∼ 92 K, indicating the suitability of these materials as substrates for YBa2Cu3O7–δ.


2019 ◽  
Vol 27 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Rashed T. Rasheed ◽  
Sariya D. Al-Algawi ◽  
Rosul M. N.

Manganese dioxide (MnO2) nanopowder has been synthesized by hydrothermal method. MnO2 was annealed at different temperatures (250, 400, 550, 700˚C). The crystal structure and surface morphology of these nanostructures were characterized by X-ray diffraction (XRD), Atomic Force Microscope (AFM) and Scanning Electron Microscopy (SEM). The catalase mimic activity (catalytic activity) of MnO2 against hydrogen peroxide (H2O2) was studied by using the new method and found that 400˚C is the best annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document