A New Concept of Biomaterials to Induce Tissue Regeneration

2007 ◽  
Vol 561-565 ◽  
pp. 1467-1470 ◽  
Author(s):  
Yasuhiko Tabata

A new therapeutic trial based on the self-healing potential of cells to naturally induce tissue regeneration, has been recently noted. To realize this regenerative medical therapy, it is highly required to efficiently combine cells with their local environment which basically allows cells to survive and biologically function in vivo through the essential interaction. Tissue engineering is a biomedical technology or methodology to create the local environment which promotes the proliferation and differentiation of cells to induce tissue regeneration. There are some cases where tissue regeneration can be induced only by supplying a cell scaffold of biomaterials. Drug delivery system (DDS) with biomaterials enhanced the in vivo biological activities of un-stable growth factor and gene for cell-induced tissue regeneration. The controlled release technology enabled growth factors to achieve the regeneration of various tissues experimentally and clinically. The DDS technology also augmented the biological functions of plasmid DNA and small interference RNA. The cells genetically engineered by the DDS gene system showed an enhanced therapeutic efficacy in cell-based tissue regeneration (cell-gene hybrid therapy). By making use of DDS technology, it is possible to suppress the deterioration and proceeding of chronic fibrotic diseases based on the self-healing potential inherently equipped in the living body. This paper emphasizes significance of biomaterials in tissue engineering for regenerative medical therapy.

2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2146
Author(s):  
Jian Guan ◽  
Fu-zhen Yuan ◽  
Zi-mu Mao ◽  
Hai-lin Zhu ◽  
Lin Lin ◽  
...  

The limited self-healing ability of cartilage necessitates the application of alternative tissue engineering strategies for repairing the damaged tissue and restoring its normal function. Compared to conventional tissue engineering strategies, three-dimensional (3D) printing offers a greater potential for developing tissue-engineered scaffolds. Herein, we prepared a novel photocrosslinked printable cartilage ink comprising of polyethylene glycol diacrylate (PEGDA), gelatin methacryloyl (GelMA), and chondroitin sulfate methacrylate (CSMA). The PEGDA-GelMA-CSMA scaffolds possessed favorable compressive elastic modulus and degradation rate. In vitro experiments showed good adhesion, proliferation, and F-actin and chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) on the scaffolds. When the CSMA concentration was increased, the compressive elastic modulus, GAG production, and expression of F-actin and cartilage-specific genes (COL2, ACAN, SOX9, PRG4) were significantly improved while the osteogenic marker genes of COL1 and ALP were decreased. The findings of the study indicate that the 3D-printed PEGDA-GelMA-CSMA scaffolds possessed not only adequate mechanical strength but also maintained a suitable 3D microenvironment for differentiation, proliferation, and extracellular matrix production of BMSCs, which suggested this customizable 3D-printed PEGDA-GelMA-CSMA scaffold may have great potential for cartilage repair and regeneration in vivo.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4199
Author(s):  
Mahshid Hafezi ◽  
Saied Nouri Khorasani ◽  
Mohadeseh Zare ◽  
Rasoul Esmaeely Neisiany ◽  
Pooya Davoodi

Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.


Planta Medica ◽  
2020 ◽  
Author(s):  
Patcharawalai Jaisamut ◽  
Subhaphorn Wanna ◽  
Surasak Limsuwan ◽  
Sasitorn Chusri ◽  
Kamonthip Wiwattanawongsa ◽  
...  

AbstractBoth quercetin and resveratrol are promising plant-derived compounds with various well-described biological activities; however, they are categorized as having low aqueous solubility and labile natural compounds. The purpose of the present study was to propose a drug delivery system to enhance the oral bioavailability of combined quercetin and resveratrol. The suitable self-microemulsifying formulation containing quercetin together with resveratrol comprised 100 mg Capryol 90, 700 mg Cremophor EL, 200 mg Labrasol, 20 mg quercetin, and 20 mg resveratrol, which gave a particle size of 16.91 ± 0.08 nm and was stable under both intermediate and accelerated storage conditions for 12 months. The percentages of release for quercetin and resveratrol in the self-microemulsifying formulation were 75.88 ± 1.44 and 86.32 ± 2.32%, respectively, at 30 min. In rats, an in vivo pharmacokinetics study revealed that the area under the curve of the self-microemulsifying formulation containing quercetin and resveratrol increased approximately ninefold for quercetin and threefold for resveratrol compared with the unformulated compounds. Moreover, the self-microemulsifying formulation containing quercetin and resveratrol slightly enhanced the in vitro antioxidant and cytotoxic effects on AGS, Caco-2, and HT-29 cells. These findings demonstrate that the self-microemulsifying formulation containing quercetin and resveratrol could successfully enhance the oral bioavailability of the combination of quercetin and resveratrol without interfering with their biological activities. These results provide valuable information for more in-depth research into the utilization of combined quercetin and resveratrol.


2012 ◽  
Vol 2 (3) ◽  
pp. 259-277 ◽  
Author(s):  
Kefeng Wang ◽  
Changchun Zhou ◽  
Youliang Hong ◽  
Xingdong Zhang

Bioceramics, because of its excellent biocompatible and mechanical properties, has always been considered as the most promising materials for hard tissue repair. It is well know that an appropriate cellular response to bioceramics surfaces is essential for tissue regeneration and integration. As the in vivo implants, the implanted bioceramics are immediately coated with proteins from blood and body fluids, and it is through this coated layer that cells sense and respond to foreign implants. Hence, the adsorption of proteins is critical within the sequence of biological activities. However, the biological mechanisms of the interactions of bioceramics and proteins are still not well understood. In this review, we will recapitulate the recent studies on the bioceramic–protein interactions.


Author(s):  
Yasuhiko Tabata

Tissue engineering is a newly emerging biomedical technology and methodology to assist and accelerate the regeneration and repairing of defective and damaged tissues based on the natural healing potentials of patients themselves. For the new therapeutic strategy, it is indispensable to provide cells with a local environment that enhances and regulates their proliferation and differentiation for cell-based tissue regeneration. Biomaterial technology plays an important role in the creation of this cell environment. For example, the biomaterial scaffolds and the drug delivery system (DDS) of biosignalling molecules have been investigated to enhance the proliferation and differentiation of cell potential for tissue regeneration. In addition, the scaffold and DDS technologies contribute to develop the basic research of stem cell biology and medicine as well as obtain a large number of cells with a high quality for cell transplantation therapy. A technology to genetically engineer cells for their functional manipulation is also useful for cell research and therapy. Several examples of tissue engineering applications with the cell scaffold and DDS of growth factors and genes are introduced to emphasize the significance of biomaterial technology in new therapeutic and research fields.


Osteology ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 149-174
Author(s):  
Naveen Jeyaraman ◽  
Gollahalli Shivashankar Prajwal ◽  
Madhan Jeyaraman ◽  
Sathish Muthu ◽  
Manish Khanna

The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2094
Author(s):  
Yunqing Kang

Biomaterials play a key role in modern tissue engineering and regenerative medicine. They are expected to take over the function of a damaged tissue in the long term, trigger the self-healing potential of the body, and biodegrade at an appropriate rate. To meet these requirements, it is imperative to understand the cell-biomaterial interactions and develop new cell biotechnologies. The collection of this Special Issue brings together a number of studies portraying the underlying mechanisms of cell-biomaterial interactions.


2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Vincent Roy ◽  
Brice Magne ◽  
Maude Vaillancourt-Audet ◽  
Mathieu Blais ◽  
Stéphane Chabaud ◽  
...  

Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.


Author(s):  
Maria Grazia Tupone ◽  
Michele d’Angelo ◽  
Vanessa Castelli ◽  
Mariano Catanesi ◽  
Elisabetta Benedetti ◽  
...  

Exploring and developing multifunctional intelligent biomaterials is crucial to improve next-generation therapies in tissue engineering and regenerative medicine. Recent findings show how distinct characteristics of in situ microenvironment can be mimicked by using different biomaterials. In vivo tissue architecture is characterized by the interconnection between cells and specific components of the extracellular matrix (ECM). Last evidence shows the importance of the structure and composition of the ECM in the development of cellular and molecular techniques, to achieve the best biodegradable and bioactive biomaterial compatible to human physiology. Such biomaterials provide specialized bioactive signals to regulate the surrounding biological habitat, through the progression of wound healing and biomaterial integration. The connection between stem cells and biomaterials stimulate the occurrence of specific modifications in terms of cell properties and fate, influencing then processes such as self-renewal, cell adhesion and differentiation. Recent studies in the field of tissue engineering and regenerative medicine have shown to deal with a broad area of applications, offering the most efficient and suitable strategies to neural repair and regeneration, drawing attention towards the potential use of biomaterials as 3D tools for in vitro neurodevelopment of tissue models, both in physiological and pathological conditions. In this direction, there are several tools supporting cell regeneration, which associate cytokines and other soluble factors delivery through the scaffold, and different approaches considering the features of the biomaterials, for an increased functionalization of the scaffold and for a better promotion of neural proliferation and cells-ECM interplay. In fact, 3D scaffolds need to ensure a progressive and regular delivery of cytokines, growth factors, or biomolecules, and moreover they should serve as a guide and support for injured tissues. It is also possible to create scaffolds with different layers, each one possessing different physical and biochemical aspects, able to provide at the same time organization, support and maintenance of the specific cell phenotype and diversified ECM morphogenesis. Our review summarizes the most recent advancements in functional materials, which are crucial to achieve the best performance and at the same time, to overcome the current limitations in tissue engineering and nervous tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document