Explosion Joining of Magnesium Alloy AZ31 and Aluminum

2007 ◽  
Vol 566 ◽  
pp. 291-296 ◽  
Author(s):  
Seyed Hadi Ghaderi ◽  
Akihisa Mori ◽  
Kazuyuki Hokamoto

Explosion welding has produced a large number of dissimilar joints. But the explosion welding of materials of low impact toughness and brittle nature is considered to be difficult. Magnesium, with its HCP structure, has a low capacity for plastic deformation at room temperature and moreover it has a high chemical reactivity. Therefore, successful explosion welding of magnesium alloys, demands careful attention to be paid to prevent failure or formation of brittle reacted zones at the weld interface. Explosive welding of the wrought Mg-Al-Zn alloy and commercially pure aluminum is performed. The welds are analyzed through metallographic characterization and shear tests. High quality welds of the two materials possessing shear strength higher than the softer layer has been obtained.

2007 ◽  
Vol 344 ◽  
pp. 947-953 ◽  
Author(s):  
K. Kawai ◽  
H. Koyama ◽  
T. Kamei ◽  
W. Kim

Boss forming, which is sometimes called hub forming, has attracted its attention as an environment-friendly rotary forming process to form a circular plate with a hole into a boss shape. An experimental study was conducted to survey the technological possibility of boss forming. Boss forming of A1050-O commercially pure aluminum plate of 10 mm thickness was carried out at room temperature under various working conditions. The effects of the working conditions on the metal flow in boss forming were clarified experimentally.


2006 ◽  
Vol 319 ◽  
pp. 109-114
Author(s):  
Jin Cheng Wang ◽  
Zhong Ming Zhang ◽  
Gen Cang Yang

Experiments have been carried out to investigate the damping behaviors of commercially pure aluminum (L2) prepared by equal-channel angular pressing (ECAP). The damping characterization was conducted on a DMTA-V apparatus. The internal friction was measured at frequencies of 0.1, 0.3, 1.0, 4.0 and 8.0 Hz over the temperature range of 20~150°C. The measured damping capacity shows that ultra-fine grained structure pure Al (L2) prepared by ECAP has a damping capacity that is enhanced in comparison with coarse one, especially when the temperature is higher than 60°C. The dependence of the damping capacity at room temperature on the strain amplitude shows a nonlinear characteristic, and increases rapidly with the strain amplitude (0) when 0 is comparatively low. While the strain amplitude is higher than certain value, the damping capacity will become saturated slowly. The high damping capacity of the pure Al prepared by ECAP was attributed to the high density of dislocations and ultra-fine grained structure.


Alloy Digest ◽  
1974 ◽  
Vol 23 (2) ◽  

Abstract ALUMINUM 1100 is commercially pure aluminum and is characterized by its excellent ability to be drawn, spun, stamped or forged. It has good weldability, excellent resistance to corrosion and many home, architectural and industrial applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-44. Producer or source: Various aluminum companies. Originally published October 1956, revised February 1974.


Alloy Digest ◽  
1957 ◽  
Vol 6 (10) ◽  

Abstract KYNAL P10 is a grade of commercially pure aluminum having high corrosion resistance and fabricating qualities. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-57. Producer or source: Imperial Chemical Industries Inc..


2021 ◽  
Vol 64 ◽  
pp. 306-322
Author(s):  
Biplov Kumar Roy ◽  
Yannis P. Korkolis ◽  
Yoshio Arai ◽  
Wakako Araki ◽  
Takafumi Iijima ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 109
Author(s):  
Ateekh Ur Rehman ◽  
Nagumothu Kishore Babu ◽  
Mahesh Kumar Talari ◽  
Yusuf Siraj Usmani ◽  
Hisham Al-Khalefah

In the present study, a friction welding process was adopted to join dissimilar alloys of Ti-Al-4V to Nitinol. The effect of friction welding on the evolution of welded macro and microstructures and their hardnesses and tensile properties were studied and discussed in detail. The macrostructure of Ti-6Al-4V and Nitinol dissimilar joints revealed flash formation on the Ti-6Al-4V side due to a reduction in flow stress at high temperatures during friction welding. The optical microstructures revealed fine grains near the Ti-6Al-4V interface due to dynamic recrystallization and strain hardening effects. In contrast, the area nearer to the nitinol interface did not show any grain refinement. This study reveals that the formation of an intermetallic compound (Ti2Ni) at the weld interface resulted in poor ultimate tensile strength (UTS) and elongation values. All tensile specimens failed at the weld interface due to the formation of intermetallic compounds.


2006 ◽  
Vol 15-17 ◽  
pp. 381-386 ◽  
Author(s):  
I.H. Hwang ◽  
Takehiko Watanabe ◽  
Y. Doi

We tried to join steel to Al-Mg alloy using a resistance spot welding method. The effect of Mg in Al-Mg alloy on the strength and the interfacial microstructure of the joint was investigated. Additionally, the effect of insert metal of commercially pure aluminum, which was put into the bonding interface, on the joint strength was examined. The obtained results were as follows. The cross-tensile strength of a joint between SS400 steel and commercially pure aluminum (SS400/Al) was high and fracture occurred in the aluminum base metal. However, the strength of a joint between SS400 and Al-Mg alloy was remarkably low and less than 30% of that of the SS400/Al joint. An intermetallic compound layer developed so thickly at the bonded interface of the SS400/Al-Mg alloy joint that the joint strength decreased. The intermetallic compound layer developed more thickly as Mg content in the Al-Mg alloy increased. Using insert metal of commercially pure aluminum containing little Mg successfully improved the strength of the SS400/Al-Mg alloy joint and the strength was equivalent to that of the base metal.


2011 ◽  
Vol 66-68 ◽  
pp. 1155-1162
Author(s):  
Jian Ning Wei ◽  
Gen Mei Li ◽  
Li Ling Zhou ◽  
Xue Yun Zhou ◽  
Jian Min Yu ◽  
...  

A large number of macroscopic pores were introduced into commercially pure aluminum (Al) and Zn-Al eutectoid alloy by air pressure infiltration process to comparatively study the influence of macroscopic pores on the damping behaviors of the materials. Macroscopic pores size are on the order of a millimetre (0.5~1.4mm) and in large proportions, typically high 76vol.%. The damping behavior of the materials is characterized by internal friction (IF). The IF was measured on a multifunction internal friction apparatus (MFIFA) at frequencies of 0.5, 1.0 and 3.0 Hz over the temperature range of 25 to 400 °C, while continuously changing temperature. The damping capacity of the metal materials is shown to increase with introducing macroscopic pores. Finally, the operative damping mechanisms in the metal materials with macroscopic pores were discussed in light of IF measurements.


Sign in / Sign up

Export Citation Format

Share Document