Droplet Interaction in the Liquid Injection by Multiple Orifices in the Performance of a Venturi Scrubber

2008 ◽  
Vol 591-593 ◽  
pp. 896-901 ◽  
Author(s):  
Vádila Giovana Guerra ◽  
M.A.F. Daher ◽  
M.V. Rodrigues ◽  
José Antônio Silveira Gonçalves ◽  
José Renato Coury

The Venturi scrubber, equipment frequently used in the removal of particles from gases, is constituted basically by a duct with a convergent section followed by a constriction, or throat, and a divergent section. A liquid, usually injected in the throat, is atomized by the flowing air at high speed. The formed droplets act as collectors of particles from the gas. The size and the size distribution of the droplets inside the equipment are therefore of great importance in the equipment performance. In the present work, the liquid jet penetration is visualized and the study of the droplet formation in a rectangular Venturi is carried out. The liquid injection is made through multiple orifices and the interaction of multiple jets is taken into account. In the experimental tests, the gas velocity in the throat, the liquid flow rate and the number of orifices for liquid injection were varied. A Malvern Spraytec aerosol analyzer was used for measuring of the droplet size and size distribution. The results showed that the liquid jet penetration influences significantly the size of the formed droplet.

2010 ◽  
Vol 660-661 ◽  
pp. 549-554
Author(s):  
Vádila Giovana Guerra ◽  
M.A.F. Daher ◽  
José Antônio Silveira Gonçalves ◽  
José Renato Coury

The Venturi scrubber, equipment frequently used in the removal of particles from gases, is constituted basically by a duct with a convergent section followed by a constriction, or throat, and a divergent section. A liquid, usually injected in the throat, is atomized by the flowing air at high speed. The formed droplets act as collectors of particles from the gas. The process of droplet formation from an injected liquid can be described as follows: the liquid enters the gas stream in the form of a jet, perpendicular to the gas flow. As the jet penetrates the gas stream, it is bent by the gas drag. After a given penetration distance, a burst occurs, and the remaining jet is disintegrated as a droplet cloud. Depending on the liquid and gas flow rates, the penetration on the jet into the gas stream may reach the walls of the equipment, and a fraction of liquid deposits in the form of a film. This film contributes little for the removal of particles from the dust laden gas. Few studies have analyzed the formation of film at the scrubber walls and its influence in the droplet size inside the Venturi scrubber. For this reason, the present study is focused on the experimental measurement of the deposition of the liquid film on the walls of a rectangular Venturi scrubber and, simultaneously, the estimation of the droplet size measured in the Venturi throat. The experiments were carried out varying the liquid flow rate, the gas velocity and the number of orifices of liquid injection. A correlation, using a dimensionless number, was proposed to quantify the influence of each experimental condition. The results indicate that film fraction has a significant influence in the droplet size measured inside of Venturi scrubber.


2012 ◽  
Vol 443-444 ◽  
pp. 996-1006 ◽  
Author(s):  
Yu Liu ◽  
Jun Li ◽  
Ying Gao ◽  
Xin Mei Yuan

Different blend ratio of ternary component fuel was tested inside a constant volume chamber to investigate fuel injection and combustion under similar real engine working conditions. Because liquid spray light scattering is the different reflective rate from the liquid droplets and its surrounding background, butanol-biodiesel-diesel liquid jet penetration length can be highlighted in the images taken by high speed camera. Various ambient temperatures from 800K to 1200K and fuel composition were investigated. Measured results showed that sudden but repeatable drop of liquid jet penetration length at constant ambient temperature conditions of 800K and 900K. With ambient temperature increasing, this phenomenon became weak and disappeared. So more works focus on non-combusting experiments in order to delete combustion reflect. With butanol and biodiesel content increasing, micro explosion becomes prone excited and more violent because of the enlarged differences in volatilities and boiling point among the components. It is concluded that micro explosion which will distinctly enhances premixed combustion process and heat release rate but it present under certain initial ambient temperature conditions only and the light fuel content shouldn’t be lower than 10%.


2009 ◽  
Author(s):  
Nelson K. Akafuah ◽  
Abraham J. Salazar ◽  
Kozo Saito ◽  
Vedanth Srinivasan

A new device, ultrasonic cavitating atomizer (UCA), has been developed that uses ultrasonically driven cavitation to produce fine droplets. In the UCA the role of cavitation is explicitly configured to enhance the breakup of the liquid jet exiting the nozzle into fine droplets; the pressure modulation also assists the breakup process. The experimental study involves the fabrication of a prototype and the building of an experimental rig to test the prototype using water as the working fluid. The parameters tested include liquid injection pressure, horn tip frequency and liquid flow rate. The result shows improvement in the atomization of water with the application of ultrasonic cavitation.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Kai Chen ◽  
Hua Zhou ◽  
Ji Li ◽  
Gary J. Cheng

A mathematical model has been presented for a high speed liquid jet penetration into soft solid by a needle-free injection system. The model consists of a cylindrical column formed by the initial jet penetration and an expansion sphere due to continuous deposition of the liquid. By solving the equations of energy conservation and volume conservation, the penetration depth and the radius of the expansion sphere can be predicted. As an example, the calculation results were presented for a typical needle-free injection system into which a silicon rubber was injected into. The calculation results were compared with the experimental results.


Author(s):  
Marcus Herrmann ◽  
Marco Arienti ◽  
Marios Soteriou

Atomizing liquids by injecting them into crossflows is a common approach in gas turbines and augmentors. Much of our current understanding of the processes resulting in atomization of the jets, the resulting jet penetration and spray drop size distribution have been obtained by performing laboratory experiments at ambient conditions. Yet, operating conditions under which jets in crossflows atomize can be far different from ambient. Hence, several dimensionless groups have been identified that are believed to determine jet penetration and resulting drop size distribution. These are usually the jet and crossflow Weber and Reynolds numbers and the momentum flux ratio. In this paper, we aim to answer the question of whether an additional dimensionless group, the liquid to gas density ratio must be matched. We perform detailed simulations of the primary atomization region using the refined level set grid (RLSG) method to track the motion of the liquid/gas phase interface. We employ a balanced force, interface projected curvature method to ensure high accuracy of the surface tension forces, use a multiscale approach to transfer broken off, small scale nearly spherical drops into a Lagrangian point particle description allowing for full two-way coupling and continued secondary atomization, and employ a dynamic Smagorinsky large eddy simulation (LES) approach in the single phase regions of the flow to describe turbulence. We present simulation results for a turbulent liquid jet (q=6.6, We=330, and Re=14,000) injected into a gaseous crossflow (Re=740,000) analyzed under ambient conditions (density ratio 816) experimentally by Brown and McDonnell [2006, “Near Field Behavior of a Liquid Jet in a Crossflow,” Proceedings of the ILASS Americas, 19th Annual Conference on Liquid Atomization and Spray Systems]. We compare simulation results obtained using a liquid to gas density ratio of 10 and 100. The results show that the increase in density ratio causes a noticeable increase in liquid core penetration with reduced bending and spreading in the transverse directions. The post-primary atomization spray penetrates further in both the jet and transverse direction. Results further show that the penetration correlations for the windward side trajectory commonly reported in the literature strongly depend on the value of threshold probability used to identify the leading edge. Correlations based on penetration of the jet’s liquid core center of mass, on the other hand, can provide a less ambiguous measure of jet penetration. Finally, the increase in density ratio results in a decrease in wavelength of the most dominant feature associated with a traveling wave along the jet as determined by proper orthogonal decomposition.


Author(s):  
Jacob N. Stenzler ◽  
Jong G. Lee ◽  
J. Matthew Deepe ◽  
Domenic A. Santavicca ◽  
Wonnam Lee

Results are presented from an experimental study of the effect of operating conditions on the fuel transfer function of a modulated liquid jet injected into a high velocity crossflow. This injection configuration is commonly used in a variety of liquid-fueled gas turbine combustion systems. The transfer function relates the rate at which fuel is injected into the crossflow to the Mie scattering intensity of droplets at a given downstream location. The time-varying rate of liquid injection into the test section is measured using a high speed rotating patternator. From a spectral analysis of the input and output functions, correlations are developed to predict the phase and gain of the fuel transfer function. Experiments are conducted over a range of jet and crossflow conditions in order to determine the effect of operating conditions on the fuel transfer function.


Author(s):  
Marcus Herrmann ◽  
Marco Arienti ◽  
Marios Soteriou

Atomizing liquids by injecting them into crossflows is a common approach in gas turbines and augmentors. Much of our current understanding of the processes resulting in atomization of the jets, the resulting jet penetration and spray drop size distribution have been obtained by performing laboratory experiments at ambient conditions. Yet, operating conditions under which jets in crossflows atomize can be far different from ambient. Hence, several dimensionless groups have been identified that are believed to determine jet penetration and resulting drop size distribution. These are usually the jet and crossflow Weber and Reynolds numbers and the momentum flux ratio. In this paper we aim to answer the question of whether an additional dimensionless group, the liquid to gas density ratio must be matched. To answer this question, we perform detailed simulations of the primary atomization region using the Refined Level Set Grid (RLSG) method to track the motion of the liquid/gas phase interface. We employ a balanced force, interface projected curvature method to ensure high accuracy of the surface tension forces, use a multi-scale approach to transfer broken off, small scale nearly spherical drops into a Lagrangian point particle description allowing for full two-way coupling and continued secondary atomization, and employ a dynamic Smagorinsky large eddy simulation (LES) approach in the single phase regions of the flow to describe turbulence. We present simulation results for a turbulent liquid jet (q = 6.6, We = 330, Re = 14,000) injected into a gaseous crossflow (Re = 740,000) analyzed under ambient conditions (density ratio 816) experimentally by Brown and McDonnel (2006). We compare simulation results obtained using a liquid to gas density ratio of 10 to those obtained using a density ratio of 100, a value typical for gas turbine combustors. The results show that the increase in density ratio results in a notice-able increase in liquid core penetration with reduced bending in the crossflow and spreading in the transverse directions. The post-primary atomization spray, however, penetrates further in both the jet and transverse direction. Results further show that penetration correlations for the windward side trajectory commonly reported in the literature strongly depend on the value of threshold probability used to identify the leading edge. Correlations based on the penetration of the jet’s liquid core center of mass, on the other hand, can provide a less ambiguous measure of jet penetration. Finally, the increase in density ratio results in a decrease in wavelength of the most dominant feature associated with a traveling wave along the jet as determined by proper orthogonal decomposition.


2012 ◽  
Vol 187 ◽  
pp. 63-67
Author(s):  
Anirut Matthujak ◽  
Chaidet Kasamnimitporn ◽  
Wuttichai Sittiwong ◽  
Kulachate Pianthong

This paper describes the characteristics of supersonic non-Newtonian liquid jets injected in ambient air. The main focus is to visualize three types of time-independent non-Newtonian liquid jet and to describe their behaviors. Moreover, comparisons between their dynamic behaviors with Newtonian liquid jet are reported. The supersonic liquid jets are generated by impact driven method in a horizontal single-stage power gun. Jets have been visualized by the high speed digital video camera and shadowgraph method. Effects of different liquid types on the jet penetration distance, average jet velocity and other characteristics have been examined. From shadowgraph images, the unique dynamic behaviors of each non-Newtonian liquid jets are observed and found obviously different from that of the Newtonian liquid jet. The maximum average jet velocity of 1,802.18 m/s (Mach no. 5.30) has been obtained. The jet penetration distance and average velocity are significantly varied when the liquid types are different.


Author(s):  
H. Sapmaz ◽  
B. Alkan ◽  
C. X. Lin ◽  
C. Ghenai

The success of supersonic air-breathing propulsion systems will be largely dependent on efficient injection, mixing, and combustion inside the supersonic combustion chamber. Fuel/air mixing enhancement inside the combustion chamber will depend on the strategies used to control the fuel jet penetration and liquid fuel droplet size, trajectory, and dispersion. We present in these paper experimental results on the mixing of pure liquid jet, aerated liquid jet and pulsed aerated liquid jet in supersonic cross flow. Transverse aerated liquid jet injection will offer relatively rapid near-field mixing, good fuel penetration and better atomization of liquid fuel. Fully modulated or pulsed fuel jet injection will introduce additional supplementary turbulent mixing. High speed imaging system is used in this study for the visualization of the injection of liquid jet in high speed cross flow. The results presented in this paper show the effect of jet/cross flow momentum ratio, the gas/liquid mass ratio and pulsing frequency on the penetration of aerated liquid jet in supersonic cross-flow. The data generated in this study will be used for the development of active control strategies to optimize the liquid fuel jet penetration and supersonic fuel/air mixing.


2005 ◽  
Author(s):  
C. Ghenai ◽  
H. Sapmaz ◽  
C. X. Lin

The success of supersonic air-breathing propulsion systems will be largely dependent on efficient injection, mixing, and combustion inside the supersonic combustion chamber. Fuel/air mixing enhancement inside the combustion chamber will depend on the strategies used to control the fuel jet penetration and liquid fuel droplet size, trajectory, and dispersion. We present in this paper experimental results on the penetration and mixing of aerated liquid fuel jet in supersonic cross flow (M=1.5). The aerated liquid jet or the barbotage technique where a small amount of gas is added to the liquid fuel will accelerate the atomization of the liquid jet and offer a good fuel penetration. High speed imaging system is used in this study for the visualization of pure and aerated liquid jet. For the aerated liquid jet the gas/liquid mass ratio was varied between 0 and 9.9 %. The results presented in this paper shows the effect of jet/cross flow momentum ratio, and gas/liquid mass ratio on the structure and penetration of aerated liquid jet (methanol) in high speed cross flow. The data generated in this study are used for the development of active control strategies to optimize the liquid fuel jet penetration and supersonic fuel/air mixing.


Sign in / Sign up

Export Citation Format

Share Document