Effect of Quenching and Reheating on Isothermal Phase Transformation in Ti-15Nb-10Zr Alloy

2010 ◽  
Vol 638-642 ◽  
pp. 582-587 ◽  
Author(s):  
Sengo Kobayashi ◽  
Ryoichi Ohshima ◽  
Kiyomichi Nakai ◽  
Tatsuaki Sakamoto

Isothermal phase transformation in Ti-15Nb-10Zr (at%) alloys has been examined by mainly means of transmission electron microscopy. Specimens solution-treated at 1000°C in  phase field were directly held at temperatures between 350 and 450°C for 1.8-86.4ks, which are called "DH (direct holding)-specimen". On the other hand, some specimens solution-treated at 1000°C were quenched into iced brine and then aged at temperatures between 350 and 450°C, which are called "QA(quench and aging)-specimen". In the DH-specimen held at 400°C α phase formed in β matrix. Microstructure evolution of QA-specimen aged at 400°C, on the other hand, is as follows.  phase formed in β matrix after aging for 1.8ks and further aging led to growth of  phase. After prolonged aging, α phase started to form in β matrix. These experimental results indicate that process of the quenching and reheating promotes the formation of  phase. Specimen quenched into iced brine after solution treatment exhibited α'' phase formation. The α'' phase in the quenched specimen would transform into β phase during reheating to the aging temperature. Reversion process of α''  β phase could promote the formation of  phase in β. Microstructure formation in the DH- and QA-specimens at 350 and 450°C will also be explained.

2020 ◽  
Vol 321 ◽  
pp. 11016
Author(s):  
Tomonori KUNIEDA ◽  
Hideki FUJII ◽  
Kazuhiro TAKAHASHIa

To grasp age hardening and phase transformation behaviors in a β rich α+β type titanium alloy, Ti-5Al-2Fe-3Mo, during aging at 300-500°C after the solution treatment at high α+β temperature. Vickers hardness and microstructure changes during aging were closely investigated using XDR and TEM/EDS. Vickers hardness rapidly increased with increasing holding time and reached about 440HV by aging at 450°C for only 5 min. It further increased to 510HV in 8h of aging time. The initial stage of age hardening is extremely fast compared to that in other conventional α+β and β type titanium alloys. After aging for only 5min, extremely fine acicular products of about 2 to 10 nm in width were formed in the transformed β phase. TEM/EDS analysis revealed that all substitutional alloying elements, Al, Fe and Mo, homogeneously distributed after the aging, indicating that the transformation is diffusionless as far as substitutional elements are concerned just like martensite transformation although it has time dependency. To explain the mechanism of this unique phase transformation having features of isothermal martensite transformation, we propose bainitic transformation where interstitials such as O diffuse without conspicuous diffusion of substitutional elements.


2013 ◽  
Vol 747-748 ◽  
pp. 904-911 ◽  
Author(s):  
Qiong Hui ◽  
Xiang Yi Xue ◽  
Hong Chao Kou ◽  
Min Jie Lai ◽  
Bin Tang ◽  
...  

A newly near-β titanium alloy Ti-7Mo-3Cr-3Nb-3Al (Ti-7333) was subjected to β phase solution treatment and ageing in the present work. The characteristics of α phase transformation in ageing treatment were studied. Results show that isothermal aging at a low temperature (350) will result in lots of ω particles with small size homogeneously distributing in the parent phase. These ω particles can act as nucleation sites for α phase and lead to the uniform precipitation of fine α phase within the β grain after further ageing treatment. However, when ageing at a higher temperature, the α phase tends to precipitate direct from the β matrix and the morphology of α phase is determined by the temperature and period of ageing treatment. After aging at 550 for 5min, acicular α phase precipitates in the β grains as well as along β grain boundaries and the size and quantity of α phase increase with the holding time. Note that Ti-7333 alloy has a quick ageing response. When aging at 700 for 1h, coarser α laths precipitate both on the grain boundary and within the grain. Increase the ageing temperature to 800, α phase precipitates within the β grain as short rod-like morphology. It is suggested that the driving force for α phase nucleation and the amount of defects in the intragranular decrease with the increasing of temperature, leading to the grain boundaries become the prior nucleation sites. Substantial α phase precipitate-free regions adjacent to β grain boundaries remained after ageing at 700 for 1h due to the rejection of β-stabilizer from coarse α lath on β grain boundaries. Aging at 800 for 1h resulted in pronounced continuous α-films along β grain boundaries.


2016 ◽  
Vol 683 ◽  
pp. 174-180 ◽  
Author(s):  
Yuri P. Sharkeev ◽  
Zhanna G. Kovalevskaya ◽  
Margarita A. Khimich ◽  
Vladimir A. Bataev ◽  
Qi Fang Zhu ◽  
...  

The phase transformations of the alloy Ti-40 mas % Nb after tempering and severe plastic deformation are studied. The phase transformations of the alloy according to the type and conditions of external influences are analyzed using methods of XRD, SEM and optical metallography. It is determined that inverse phase transformation of the metastable α''-phase to equilibrium β-phase is carried out after severe plastic deformation. Complete phase transformation α'' → β is typical for the mode, which consists of three pressing operation with the change of the loading axis in cramped conditions, followed by a multi-pass rolling in grooved rolls.


2014 ◽  
Vol 1061-1062 ◽  
pp. 13-16
Author(s):  
Zhi Chao Liu ◽  
Yao Li ◽  
Jun Jie Yang

Effect of the solid-solution treatment on the structures and properties of the die-casting AZ91D alloy with mixed rare-earth elements was explored.The results show that the the tensile strength and the elongation ratio δ have been improved by solid-solution treatment.The higher the treatment temperature was,the better the improvement were.With the increase of the temperature,the content of β phase was lower when those of M-RE compound and the refinement α phase were higher.The tensile strength can reach 304.74Mpa and the elongation ratio can reach 11% after the solid-solution treatment of 370°C×16h.


2015 ◽  
Vol 828-829 ◽  
pp. 232-238 ◽  
Author(s):  
Kalenda Mutombo ◽  
Siyasiya Charles ◽  
Waldo Stumpf

The β-phase transforms to α′, α and α" within a range of temperature from the β-transus (Tβ) to about 600°C, considering no external stress is applied. Two types of microstructure were obtained: acicular martensite when rapidly cooled and lamellar α/β when slowly cooled from the β phase field. The sequential transformation of β into α′, α-phase, α2, and α" was revealed as peaks on the coefficient thermal expansion (CTE) curves, however, reversed transformations: α"→β, and α→β, were revealed by the DSC thermograms. The presence of β, α′, α, α2 and α" was identified by means of XRD analysis and HRTEM.


2013 ◽  
Vol 465-466 ◽  
pp. 954-957
Author(s):  
Roslee Ahmad ◽  
R. Sadeghi ◽  
M.B.A. Asmael ◽  
H. Mohamad ◽  
Zawati Harun ◽  
...  

The effect of Cr addition on the fluidity of aluminum (LM6) alloy has been investigated by spiral fluidity test. Presence of 0.1 wt.% Cr decreased fluidity of melt due to formation of sludge. In fact Cr changes the morphology of the intermetallic phase from β-intermetallics less harmful polyhedral morphology (α-intermetallics). The β-phases have largest surface to volume ratio, hence they have the largest interfacial region with the melt and are the most detrimental intermetallic to drop off the fluidity. In Cr-containing alloys the effect of α-phase is less detrimental than β-phase to the fluidity. On the other hand sludge formation and consuming Si and shifts the local chemical composition of the melt to the aluminum side of the phase diagram which has lower fluidity than eutectic and hypereutectic compositions.


2007 ◽  
Vol 561-565 ◽  
pp. 1435-1440 ◽  
Author(s):  
Masahiko Ikeda ◽  
Tsuyoshi Miyazaki ◽  
Satoshi Doi ◽  
Michiharu Ogawa

Phase constitution in the solution-treated and quenched state and the heat treatment behavior were investigated by electrical resistivity, hardness, and elastic modulus measurements, X-ray diffraction, and optical microscopy. Hexagonal martensite and the β phase were identified in the Zr-5mass%Nb alloy. β and ω phases were identified in the Zr-10 and 15mass%Nb alloys, and only the β phase was identified in the Ti-20Nb alloy. Resistivity at RT, Vickers hardness and elastic modulus increased up to 10Nb and then decreased dramatically at 15Nb. Above 15Nb, these values slightly decreased. The elastic moduli for 15Nb and 20Nb were 59.5 and 55.5 GPa, respectively. On isochronal heat treatment, the isothermal ω phase precipitated between 473 and 623 K and then the α phase precipitated in the 10Nb, 15Nb and 20Nb alloys.


1977 ◽  
Vol 55 (7-8) ◽  
pp. 677-683 ◽  
Author(s):  
H. N. Ng ◽  
C. Calvo

Crystals of the cristobalite polymorph of AlPO4 (phosphocristobalite) up to 3 mm in breadth were grown from a V2O5 flux. In the α phase (C2221), the presence of twin domains prevents an accurate resolution of the structure as a function of temperature. The six twin components of this phase readily lead to a disordered β phase [Formula: see text] with short range correlations as suggested previously. The α–β transformation is first order with a substantial hysteresis in the transition temperature.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5037
Author(s):  
Tao Ma ◽  
Sicong Zhao ◽  
Liping Wang ◽  
Zhiwei Wang ◽  
Erjun Guo ◽  
...  

The effect of solution treatment time on the microstructure and mechanical properties of aged the Mg-2.0Nd-2.0Sm-0.4Zn-0.4Zr (wt.%) alloy were investigated to give full play to the performance of the alloy. As the solution treatment time increased from 2 h to 12 h at 788 K, the grain size of the solution-treated alloy significantly increased, and the network-like β-Mg12(Nd, Sm, Zn) phase gradually dissolved into the α-Mg matrix. It should be noted that no obvious residual β phase can be observed when the solution treatment time was more than 8 h. After the solution-treated alloy was further aged at 473 K for 18 h, a large number of nanoscale precipitates were observed in the α-Mg matrix. The solution treatment time was 2 h, the α-Mg matrix mainly consisted of spherical-shaped and basal plate-shaped precipitates. Upon the increase of solution treatment time to 8 h, the key strengthening phases transformed from spherical-shaped precipitates and basal plate-shaped precipitates to prismatic plate-shaped β′ precipitates. The orientation relationship between β′ precipitates and α-Mg matrix was (1¯10)β′ // (11¯00)α and [112]β′ // the [224¯3]α. Further increasing of solution treatment time from 8 h to 12 h, the key strengthening phases mainly were still β′ precipitates. The solution treatment of aged alloy was carried out at 788 K for 8 h, which achieved optimal ultimate tensile strength (UTS) of 261 ± 4.1 MPa, yield strength (YS) of 154 ± 1.5 MPa, and elongation of 5.8 ± 0.1%, respectively.


2020 ◽  
Vol 321 ◽  
pp. 12010
Author(s):  
Changliang Wang ◽  
Feng Li ◽  
Can Ding ◽  
Hui Chang ◽  
Lian Zhou

The phase transformation and dilatometric curves in Fe microalloyed Ti6Al4V alloy (Ti6Al4V-Fe) during continuous heating at 1 ℃ /min heating rate had been studied by dilatometer and metallographic methods, and β phase transition temperatures of alloy were obtained. In order to validate the accuracy of these β phase transition temperature and microstructure evolution, the relative phase concentration and the evolution of microstructure which were acquired by cooling after tempering were analyzed by metallographic microscope. The results illuminated that the expansion method was able to accurately measure the β transformation temperature of Ti6Al4V-Fe alloy. The lathy-shaped α phase decreased significantly disappeared in the range of 838℃ to 988℃, and the α→β phase transformation occurred.


Sign in / Sign up

Export Citation Format

Share Document