Effects of Thickness on Thermal and Mechanical Properties of Air-Plasma Sprayed Thermal Barrier Coatings

2010 ◽  
Vol 658 ◽  
pp. 372-375 ◽  
Author(s):  
Sang Yeop Lee ◽  
Jae Young Kwon ◽  
Tae Woong Kang ◽  
Yeon Gil Jung ◽  
Ung Yu Paik

Thermal barrier coating systems (TBCs) prepared by an air-plasma spray (APS) have been used to protect metallic components of gas turbines because of its economic advantage. To enhance the energy efficiency of gas turbine systems, the operating temperature is increased to over 1300 °C, which requires a new material with low thermal conductivity and an increase of TBC thickness. In this study we have focused the microstructure related to the thickness of TBC and their thermal properties, with specific attention to defect species as well as to its morphology with the thermal exposure time. Resintering of TBC happens during thermal exposure in a high temperature, resulting in the less strain tolerance and the higher thermal conductivity. In order to investigate the thermal properties of TBC related to the microstructural evolution, TBCs with different thicknesses of 200 µm, 400 µm, 600 µm, and 2000 µm were deposited on a flat graphite by the APS. The thermal exposure tests were conducted in different dwell time till 800h at 1100 °C. The thermal diffusivity is significantly increased after thermal exposures, depending on the thermal exposure time. Microstructural analysis clearly shows that the variation of thermal diffusivity is ascribed to the coalescence of small cracks and the resintering effect. The hardness values of TBCs are also increased as well. The relationship between mechanical properties and TBC thickness is discussed, including the effect of thickness on thermal properties.

2012 ◽  
Vol 512-515 ◽  
pp. 1040-1044 ◽  
Author(s):  
Zhe Lu ◽  
Sang Won Myoung ◽  
Tae Sik Jang ◽  
Kang Hyeon Lee ◽  
Je Hyun Lee ◽  
...  

The effects of intrinsic feature of feedstock in air plasma-sprayed (APS) coatings on the microstructure and mechanical properties of vertical-cracked thermal barrier coatings (TBCs) were investigated in thermal exposure. The microstructure after the thermal exposure for 400 h is densified, while after the thermal exposure for 800 h various defects such as interlamellar cracks and the vertical and horizontal cracks are newly developed, even though the total porosity is decreased. The microstructure of the TBC prepared with 204 C-NS is more porous than that of the TBC with 204NS, showing higher mechanical properties and better thermal stability in the TBC with 204 NS.


Author(s):  
Stephen Akwaboa ◽  
Monica B. Silva ◽  
Patrick Mensah ◽  
Ravinder Diwan ◽  
Douglas E. Wolfe ◽  
...  

Thermal barrier coatings (TBCs) are used in gas turbine engines to achieve higher turbine inlet temperatures (TITs), improve turbine operating temperatures, reduce fuel consumption, increase components lives and thus lead to better turbine efficiency. Yttria-stabilized zirconia (YSZ), is an ideal candidate for TBCs as it has good thermal shock resistance, high thermal stability, low density, and low thermal conductivity. Traditionally, there are two main methods of fabricating TBCs: air plasma spray (APS) TBCs and electron beam physical vapor deposition (EBPVD) TBCs. It is the objective of this paper to study the effects of APS TBC microstructures in comparison with EBPVD TBCs deposited on NiCoCrAlYHf bond coated In738 substrate material for applications in advanced gas turbines. The bond coat NiCoCrAlY contains 0.25w% Hf which is expected to improve the reliability of standard (STD) and vertically cracked (VC) APS TBC material. TBC top coatings of 300 μm and 600 μm thickness for both standard and VC APS TBC and 300 μm EBPVD TBC were further investigated to determine the effect of coating thickness of TBC performance. Selected test specimens were evaluated for dry and wet thermal cyclic oxidation performance. Thermal property determination of select samples was achieved using a laser flash system that measures the thermal diffusivity and specific heat capacity from which the thermal conductivity is calculated. Lastly, select YSZ-Al2O3 composite structures were analyzed in addition to APS and EBPVD TBC microstructure, porosity, and thermal conductivity determination using a variety of analytical techniques. A laser flash system was used to measure the thermal diffusivity for all the samples. A POREMASTER 33 system was used to measure the porosity of the APS and EBPVD samples.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


Author(s):  
Messiha Saad ◽  
Darryl Baker ◽  
Rhys Reaves

Thermal properties of materials such as specific heat, thermal diffusivity, and thermal conductivity are very important in the engineering design process and analysis of aerospace vehicles as well as space systems. These properties are also important in power generation, transportation, and energy storage devices including fuel cells and solar cells. Thermal conductivity plays a critical role in the performance of materials in high temperature applications. Thermal conductivity is the property that determines the working temperature levels of the material, and it is an important parameter in problems involving heat transfer and thermal structures. The objective of this research is to develop thermal properties data base for carbon-carbon and graphitized carbon-carbon composite materials. The carbon-carbon composites tested were produced by the Resin Transfer Molding (RTM) process using T300 2-D carbon fabric and Primaset PT-30 cyanate ester. The graphitized carbon-carbon composite was heat treated to 2500°C. The flash method was used to measure the thermal diffusivity of the materials; this method is based on America Society for Testing and Materials, ASTM E1461 standard. In addition, the differential scanning calorimeter was used in accordance with the ASTM E1269 standard to determine the specific heat. The thermal conductivity was determined using the measured values of their thermal diffusivity, specific heat, and the density of the materials.


2007 ◽  
Vol 353-358 ◽  
pp. 1935-1938 ◽  
Author(s):  
Yasuhiro Yamazaki ◽  
T. Kinebuchi ◽  
H. Fukanuma ◽  
N. Ohno ◽  
K. Kaise

Thermal barrier coatings (TBCs), that reduce the temperature in the underlying substrate material, are an essential requirement for the hot section components of industrial gas turbines. Recently, in order to take full advantage of the potential of the TBC systems, experimental and analytical investigations in TBC systems have been performed. However there is a little information on the deformation behavior of the top coating. In addition, the effects of the thermal exposure and the process parameters on the mechanical properties of the top coating have never been clarified. From these backgrounds, the effects of the process variables in APS and the thermal exposure on the mechanical properties were investigated in order to optimize the APS process of top coatings. The experimental results indicated that the mechanical properties of the APS-TBC, i.e. the tensile strength and the elastic modulus, were significantly changed by the process variables and the long term thermal exposure. The microstructural investigation was also carried out and the relationship between the mechanical properties and the porosity was discussed.


2012 ◽  
Vol 512-515 ◽  
pp. 469-473 ◽  
Author(s):  
L. Liu ◽  
Z. Ma ◽  
F.C. Wang ◽  
Q. Xu

According to the theory of phonon transport and thermal expansion, a new complex rare-earth zirconate ceramic (La0.4Sm0.5Yb0.1)2Zr2O7, with low thermal conductivity and high thermal expansion coefficient, has been designed by doping proper ions at A sites. The complex rare-earth zirconate (La0.4Sm0.5Yb0.1)2Zr2O7 powder for thermal barrier coatings (TBCs) was synthesized by coprecipitation-calcination method. The phase, microstructure and thermal properties of the new material were investigated. The results revealed that single phase (La0.4Sm0.5Yb0.1)2Zr2O7 with pyrochlore structure was synthesized. The thermal conductivity and the thermal expansion coefficient of the designed complex rare-earth zirconate ceramic is about 1.3W/m•K and 10.5×10-6/K, respectively. These results imply that (La0.4Sm0.5Yb0.1)2Zr2O7 can be explored as the candidate material for the ceramic layer in TBCs system.


Author(s):  
S. M. Guo ◽  
M. B. Silva ◽  
Patrick F. Mensah ◽  
Nalini Uppu

Thermal barrier coatings (TBCs) are used in gas turbine engines to achieve a better efficiency by allowing increased turbine inlet temperature and decreasing the amount of cooling air used. Plasma spraying is one of the most reliable methods to produce TBCs, which are generally comprised of a top coating of ceramic and a bond-coat of metal. Usually, the top coating is Yttria-Stabilized-Zirconia (YSZ), providing the thermal barrier effect. The bond-coat is typically a layer of M-Cr-Al-Y (where “M” stands for “metal”), employed to improve the attachment between the ceramic top-coat and the substrate. Due to the extreme temperature gradient presented in the plasma jet and the wide particle size distribution, during the coating process, injected ceramic powders may experience a significantly different heating process. Different heating history, coupled with the substrate preheating temperature, may affect the thermal properties of the YSZ layers. In this paper, four sets of mol 8% YSZ disks are fabricated under controlled temperatures of 1100°C, 1200°C, 1400°C and 1600°C. Subsequently the thermal properties and the microstructures of these YSZ disks are studied. The results indicate a strong microstructure change at a temperature slightly below 1400°C. For a high sintering temperature, a dense YSZ layer can be formed, which is good for gas tight operation; At low sintering temperature, say 1200°C, a porous YSZ layer is formed, which has the advantage of low thermal conductivity. For gas turbine TBC applications, a robust low thermal conductivity YSZ layer is desirable, while for Solid Oxide Fuel Cells, a gas-tight YSZ film must be formed. This study offers a general guideline on how to prepare YSZ layers, mainly by controlling the heating process, to form microstructures with desired properties.


2021 ◽  
Vol 407 ◽  
pp. 185-191
Author(s):  
Josef Tomas ◽  
Andreas Öchsner ◽  
Markus Merkel

Experimental analyses are performed to determine thermal conductivity, thermal diffusivity and volumetric specific heat with transient plane source method on hollow sphere structures. Single-sided testing is used on different samples and different surfaces. Results dependency on the surface is observed.


Coatings ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 253 ◽  
Author(s):  
Qi Wang ◽  
Lei Guo ◽  
Zheng Yan ◽  
Fuxing Ye

TiO2 was doped into Er2O3-stabilized ZrO2 (ErSZ) to obtain desirable properties for thermal barrier coating (TBC) applications. The phase composition, thermal conductivity, and mechanical properties of TiO2-doped ErSZ were investigated. ErSZ had a non-transformable metastable tetragonal (t′) phase, the compound with 5 mol % TiO2 consisted of t′ and cubic (c) phases, while 10 mol % TiO2 doped ErSZ had t′, c, and about 3.5 mol % monoclinic (m) phases. Higher TiO2 doping contents caused more m phase, and the compounds were composed of t′ and m phases. When the dopant content was below 10 mol %, TiO2 doping could decrease the thermal conductivity and enhance the toughness of the compounds. At higher doping levels, the compounds exhibited an increased thermal conductivity and a reduction in the toughness, mainly attribable to the formation of the undesirable m phase. Hence, 10 mol % TiO2-doped ErSZ could be a promising candidate for TBC applications.


Sign in / Sign up

Export Citation Format

Share Document